26,146 research outputs found

    Large space system: Charged particle environment interaction technology

    Get PDF
    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems

    Isolation of Psoroptes scab mite microsatellite markers (Acari: Psoroptidae)

    Get PDF
    Nine microsatellite markers have been isolated from the scab mite,Psoroptes ovis. These markers have been tested for polymorphism in individual Psoroptes mites originating from two hosts, the European rabbit, Oryctolagus cuniculus, and sheep, Ovis aries. No definitive picture of Psoroptes species’ status or interrelationships exists. This study provides the basis for a new molecular system to elucidate the systematics of groupings within the genus Psoroptes, allowing us to clarify the population dynamics and epidemiology of the mites causing sheep scab world wide

    The importance of planetary rotation period for ocean heat transport

    Get PDF
    The climate, and hence potential habitability, of a planet crucially depends on how its atmospheric and oceanic circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modelling the dynamics of their atmospheres whilst dramatically simplifying the treatment of the oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet having no continental barriers, which is a configuration which dramatically changes the oceanic dynamics. Here the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier – the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability

    Short-term climate response to a freshwater pulse in the Southern Ocean

    Get PDF
    The short-term response of the climate system to a freshwater anomaly in the Southern Ocean is investigated using a coupled global climate model. As a result of the anomaly, ventilation of deep waters around Antarctica is inhibited, causing a warming of the deep ocean, and a cooling of the surface. The surface cooling causes Antarctic sea-ice to thicken and increase in extent, and this leads to a cooling of Southern Hemisphere surface air temperature. The surface cooling increases over the first 5 years, then remains constant over the next 5 years. There is a more rapid response in the Pacific Ocean, which transmits a signal to the Northern Hemisphere, ultimately causing a shift to the negative phase of the North Atlantic Oscillation in years 5–10

    High spatial resolution observations of CUDSS14A: a SCUBA-selected ultraluminous galaxy at high redshift

    Get PDF
    The definitive version is available at www.blackwell-synergy.com '. Copyright Blackwell Publishing DOI : 10.1046/j.1365-8711.2000.03822.xWe present a high-resolutionmillimetre interferometric image of the brightest SCUBA- selected galaxy from the Canada-UK deep SCUBA survey (CUDSS). We make a very clear detection at 1.3 mm, but fail to resolve any structure in the source.Peer reviewe

    Madden-Julian Oscillation as simulated by the MPI earth system model: Over the last and into the next Millennium

    No full text
    The Madden-Julian oscillation (MJO), as represented by the Max Planck Institute for Meteorology Earth System Model (MPI-ESM), is analyzed for the first time over time periods ranging from decades to more than a millennium. Particular attention is paid to the behavior of the MJO index as calculated from the leading pair of empirical orthogonal functions (EOFs) derived from a multivariate EOF analysis. The analysis of 1000 year simulations with the MPI-ESM and its predecessor reveals significant interannual (2–6 years) to interdecadal (10–20 years) internal variability of the MJO but relatively little evidence of significant variability at longer timescales in unforced runs. A 1200 year experiment forced by the best estimates of solar variability, volcanism, and changing atmospheric composition indicates that the MJO simulated in the twentieth century is very similar to the MJO simulated since AD 800. The analysis of sensitivity experiments shows the influence of different external forcings: solar variability may contribute to MJO variability on 11 and 22 year periods, but this is difficult to separate from internal variability; and there is a hint of enhanced decadal variability associated with volcanic forcing. Land use change and changes associated with anthropogenic forcing over the twentieth century have no detectable effect on the simulated MJO. An increase of the CO2 concentrations by 1% per year starting in AD 1850 leads to an increase in the MJO strength in the twenty-first century, as does the warming associated with an abrupt quadrupling of the atmospheric CO2 concentration, suggesting that the MJO may intensify with warming
    corecore