1,472 research outputs found

    Global entrainment of transcriptional systems to periodic inputs

    Get PDF
    This paper addresses the problem of giving conditions for transcriptional systems to be globally entrained to external periodic inputs. By using contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific case of some models of transcriptional systems. The basic mathematical results needed from contraction theory are proved in the paper, making it self-contained

    Observability of Switched Linear Systems in Continuous Time

    Get PDF
    We study continuous-time switched linear systems with unobserved and exogeneous mode signals. We analyze the observability of the initial state and initial mode under arbitrary switching, and characterize both properties in both autonomous and non-autonomous cases

    From toothpick legs to dropping vaginas: Gender and sexuality in Joan Rivers' stand-up comedy performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Intellect.This article employs sociocultural analysis to examine Joan Rivers’ stand-up comedy performances in order to reveal how she successfully operates in a sphere of artistic expression that has been, and continues to be, male-dominated. The analysis uncovers how Rivers’ stand-up comedy performance involves a complex combination of elements and how it fuses features that are regarded as ‘traditionally masculine’, such as aggression, with features frequently used by other female stand-up comedians, such as self-deprecating comedy and confessional comedy. Furthermore, the analysis exposes the complex ways in which constructions of gender and sexuality are negotiated and re-negotiated in Rivers’ stand-up comedy performance, and illustrates how dominant ideological identity constructions can be simultaneously reinforced and subverted within the same comic moment

    Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties

    Full text link
    A shortcoming of existing reachability approaches for nonlinear systems is the poor scalability with the number of continuous state variables. To mitigate this problem we present a simulation-based approach where we first sample a number of trajectories of the system and next establish bounds on the convergence or divergence between the samples and neighboring trajectories. We compute these bounds using contraction theory and reduce the conservatism by partitioning the state vector into several components and analyzing contraction properties separately in each direction. Among other benefits this allows us to analyze the effect of constant but uncertain parameters by treating them as state variables and partitioning them into a separate direction. We next present a numerical procedure to search for weighted norms that yield a prescribed contraction rate, which can be incorporated in the reachability algorithm to adjust the weights to minimize the growth of the reachable set

    A Characterization of Scale Invariant Responses in Enzymatic Networks

    Get PDF
    An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose validity we show is both necessary and sufficient for scale invariance of enzymatic networks. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions

    On local linearization of control systems

    Get PDF
    We consider the problem of topological linearization of smooth (C infinity or real analytic) control systems, i.e. of their local equivalence to a linear controllable system via point-wise transformations on the state and the control (static feedback transformations) that are topological but not necessarily differentiable. We prove that local topological linearization implies local smooth linearization, at generic points. At arbitrary points, it implies local conjugation to a linear system via a homeomorphism that induces a smooth diffeomorphism on the state variables, and, except at "strongly" singular points, this homeomorphism can be chosen to be a smooth mapping (the inverse map needs not be smooth). Deciding whether the same is true at "strongly" singular points is tantamount to solve an intriguing open question in differential topology

    Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton

    Get PDF
    Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening
    corecore