10,492 research outputs found

    Ground states versus low-temperature equilibria in random field Ising chains

    Full text link
    We discuss with the aid of random walk arguments and exact numerical computations the magnetization properties of one-dimensional random field chains. The ground state structure is explained in terms of absorbing and non-absorbing random walk excursions. At low temperatures, the magnetization profiles follow those of the ground states except at regions where a local random field fluctuation makes thermal excitations feasible. This follows also from the non-absorbing random walks, and implies that the magnetization length scale is a product of these two scales. It is not simply given by the Imry-Ma-like ground state domain size nor by the scale of the thermal excitations.Comment: 7 pages LaTeX, 8 eps-figures include

    Scaling approach to itinerant quantum critical points

    Full text link
    Based on phase space arguments, we develop a simple approach to metallic quantum critical points, designed to study the problem without integrating the fermions out of the partition function. The method is applied to the spin-fermion model of a T=0 ferromagnetic transition. Stability criteria for the conduction and the spin fluids are derived by scaling at the tree level. We conclude that anomalous exponents may be generated for the fermion self-energy and the spin-spin correlation functions below d=3d=3, in spite of the spin fluid being above its upper critical dimension.Comment: 3 pages, 2 figures; discussion of the phase space restriction modified and, for illustrative purposes, restricted to the tree-level analysis of the ferromagnetic transitio

    Multiscale 3D Shape Analysis using Spherical Wavelets

    Get PDF
    ©2005 Springer. The original publication is available at www.springerlink.com: http://dx.doi.org/10.1007/11566489_57DOI: 10.1007/11566489_57Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data

    3-D unrestricted TDHF fusion calculations using the full Skyrme interaction

    Full text link
    We present a study of fusion cross sections using a new generation Time-Dependent Hartree-Fock (TDHF) code which contains no approximations regarding collision geometry and uses the full Skyrme interaction, including all of the time-odd terms. In addition, the code uses the Basis-Spline collocation method for improved numerical accuracy. A comparative study of fusion cross sections for 16O+16,28O^{16}O + ^{16,28}O is made with the older TDHF results and experiments. We present results using the modern Skyrme forces and discuss the influence of the new terms present in the interaction.Comment: 7 pages, 10 figure

    Grid-cell representations in mental simulation

    Get PDF
    Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation

    New method for the time calibration of an interferometric radio antenna array

    Get PDF
    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative delays between the antennas can be detected and corrected for at each recorded event by measuring the phases at the beacon frequencies.Comment: 9 pages, 9 figures, 1 table, pre-print of article published in Nuclear Inst. and Methods in Physics Research, A, available at: http://www.sciencedirect.com/science/article/B6TJM-4Y9CF4B-4/2/37bfcb899a0f387d9875a5a0729593a

    Storage of correlated patterns in a perceptron

    Full text link
    We calculate the storage capacity of a perceptron for correlated gaussian patterns. We find that the storage capacity αc\alpha_c can be less than 2 if similar patterns are mapped onto different outputs and vice versa. As long as the patterns are in general position we obtain, in contrast to previous works, that αc≥1\alpha_c \geq 1 in agreement with Cover's theorem. Numerical simulations confirm the results.Comment: 9 pages LaTeX ioplppt style, figures included using eps
    • …
    corecore