1,404 research outputs found

    Airborne field strength monitoring

    Get PDF
    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper

    Radioactive Probes of the Supernova-Contaminated Solar Nebula: Evidence that the Sun was Born in a Cluster

    Get PDF
    We construct a simple model for radioisotopic enrichment of the protosolar nebula by injection from a nearby supernova, based on the inverse square law for ejecta dispersion. We find that the presolar radioisotopes abundances (i.e., in solar masses) demand a nearby supernova: its distance can be no larger than 66 times the size of the protosolar nebula, at a 90% confidence level, assuming 1 solar mass of protosolar material. The relevant size of the nebula depends on its state of evolution at the time of radioactivity injection. In one scenario, a collection of low-mass stars, including our sun, formed in a group or cluster with an intermediate- to high-mass star that ended its life as a supernova while our sun was still a protostar, a starless core, or perhaps a diffuse cloud. Using recent observations of protostars to estimate the size of the protosolar nebula constrains the distance of the supernova at 0.02 to 1.6 pc. The supernova distance limit is consistent with the scales of low-mass stars formation around one or more massive stars, but it is closer than expected were the sun formed in an isolated, solitary state. Consequently, if any presolar radioactivities originated via supernova injection, we must conclude that our sun was a member of such a group or cluster that has since dispersed, and thus that solar system formation should be understood in this context. In addition, we show that the timescale from explosion to the creation of small bodies was on the order of 1.8 Myr (formal 90% confidence range of 0 to 2.2 Myr), and thus the temporal choreography from supernova ejecta to meteorites is important. Finally, we can not distinguish between progenitor masses from 15 to 25 solar masses in the nucleosynthesis models; however, the 20 solar mass model is somewhat preferred.Comment: ApJ accepted, 19 pages, 3 figure

    Spin-charge separation in two-component Bose-gases

    Get PDF
    We show that one of the key characteristics of interacting one-dimensional electronic quantum systems, the separation of spin and charge, can be observed in a two-component system of bosonic ultracold atoms even close to a competing phase separation regime. To this purpose we determine the real-time evolution of a single particle excitation and the single-particle spectral function using density-matrix renormalization group techniques. Due to efficient bosonic cooling and good tunability this setup exhibits very good conditions for observing this strong correlation effect. In anticipation of experimental realizations we calculate the velocities for spin and charge perturbations for a wide range of parameters

    Excitations in two-component Bose-gases

    Full text link
    In this paper, we study a strongly correlated quantum system that has become amenable to experiment by the advent of ultracold bosonic atoms in optical lattices, a chain of two different bosonic constituents. Excitations in this system are first considered within the framework of bosonization and Luttinger liquid theory which are applicable if the Luttinger liquid parameters are determined numerically. The occurrence of a bosonic counterpart of fermionic spin-charge separation is signalled by a characteristic two-peak structure in the spectral functions found by dynamical DMRG in good agreement with analytical predictions. Experimentally, single-particle excitations as probed by spectral functions are currently not accessible in cold atoms. We therefore consider the modifications needed for current experiments, namely the investigation of the real-time evolution of density perturbations instead of single particle excitations, a slight inequivalence between the two intraspecies interactions in actual experiments, and the presence of a confining trap potential. Using time-dependent DMRG we show that only quantitative modifications occur. With an eye to the simulation of strongly correlated quantum systems far from equilibrium we detect a strong dependence of the time-evolution of entanglement entropy on the initial perturbation, signalling limitations to current reasonings on entanglement growth in many-body systems

    Dynamics of Bloch Oscillations in Disordered Lattice Potentials

    Full text link
    We present a detailed analysis of the dynamics of Bloch oscillations of Bose-Einstein condensates in disordered lattice potentials. Due to the disorder and the interparticle interactions these oscillations undergo a dephasing, reflected in a damping of the center of mass oscillations, which should be observable under realistic experimental conditions. The interplay between interactions and disorder is far from trivial, ranging from an interaction-enhanced damping due to modulational instability for strong interactions, to an interaction-reduced damping due to a dynamical screening of the disorder potential

    Monte Carlo Study of the Anisotropic Heisenberg Antiferromagnet on the Triangular Lattice

    Full text link
    We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model with easy axis anisotropy on the triangular lattice. Both the free energy cost for long wavelength spin waves as well as for the formation of free vortices are obtained from the spin stiffness and vorticity modulus respectively. Evidence for two distinct Kosterlitz-Thouless types of defect-mediated phase transitions at finite temperatures is presented.Comment: 8 pages, 10 figure

    Anti-alignments in conformance checking: the dark side of process models

    Get PDF
    Conformance checking techniques asses the suitability of a process model in representing an underlying process, observed through a collection of real executions. These techniques suffer from the wellknown state space explosion problem, hence handling process models exhibiting large or even infinite state spaces remains a challenge. One important metric in conformance checking is to asses the precision of the model with respect to the observed executions, i.e., characterize the ability of the model to produce behavior unrelated to the one observed. By avoiding the computation of the full state space of a model, current techniques only provide estimations of the precision metric, which in some situations tend to be very optimistic, thus hiding real problems a process model may have. In this paper we present the notion of antialignment as a concept to help unveiling traces in the model that may deviate significantly from the observed behavior. Using anti-alignments, current estimations can be improved, e.g., in precision checking. We show how to express the problem of finding anti-alignments as the satisfiability of a Boolean formula, and provide a tool which can deal with large models efficiently.Peer ReviewedPostprint (author's final draft

    Five-year audit of adherence to an anaesthesia pre-induction checklist.

    Get PDF
    Although patient safety related to airway management has improved substantially over the last few decades, life-threatening events still occur. Technical skills, clinical expertise and human factors contribute to successful airway management. Checklists aim to improve safety by providing a structured approach to equipment, personnel and decision-making. This audit investigates adherence to our institution's airway checklist from 1 June 2016 to 31 May 2021. Inclusion criteria were procedures requiring airway management and we excluded all procedures performed solely under regional anaesthesia, sedation without airway management or paediatric and cardiovascular surgery. The primary outcome was the proportion of wholly performed pre-induction checklists. Secondary outcomes were the pattern of adherence over the 5 years well as details of airway management, including: airway management difficulties; time and location of induction; anaesthesia teams in operating theatres (including teams for different surgical specialities); non-operating theatre and emergency procedures; type of anaesthesia (general or combined); and urgency of the procedure. In total, 95,946 procedures were included. In 57.3%, anaesthesia pre-induction checklists were completed. Over the 5 years after implementation, adherence improved from 48.3% to 66.7% (p < 0.001). Anticipated and unanticipated airway management difficulties (e.g. facemask ventilation, supraglottic airway device or intubation) defined by the handling anaesthetist were encountered in 4.2% of all procedures. Completion of the checklist differed depending on the time of day (61.3% during the day vs. 35.0% during the night, p < 0.001). Completion also differed depending on location (66.8% in operating theatres vs. 41.0% for non-operating theatre anaesthesia, p < 0.001) and urgency of procedure (65.4% in non-emergencies vs. 35.4% in emergencies, p < 0.001). A mixed-effect model indicated that urgency of procedure is a strong predictor for adherence, with emergency cases having lower adherence (OR 0.58, 95%CI 0.49-0.68, p < 0.001). In conclusion, over 5 years, a significant increase in adherence to an anaesthesia pre-induction checklist was found, and areas for further improvement (e.g. emergencies, non-operating room procedures, night-time procedures) were identified

    What else can be learned when coding? A configurative literature review of learning opportunities through computational thinking

    Get PDF
    This is the final version. Available from SAGE Publications via the DOI in this record. Underpinning the teaching of coding with Computational Thinking has proved relevant for diverse learners, particularly given the increasing demand in upskilling for today’s labour market. While literature on computing education is vast, it remains unexplored how existing CT conceptualisations relate to the learning opportunities needed for a meaningful application of coding in non-Computer Scientists’ lives and careers. In order to identify and organise the learning opportunities in the literature about CT, we conducted a configurative literature review of studies published on Web of Science, between 2006 and 2021. Our sample gathers 34 papers and was analysed on NVivo to find key themes. We were able to organise framings of CT and related learning opportunities into three dimensions: functional, collaborative, and critical and creative. These dimensions make visible learning opportunities that range from individual cognitive development to interdisciplinary working with others, and to active participation in a technologically evolving society. By comparing and contrasting frameworks, we identify and explain different perspectives on skills. Furthermore, the three-dimensional model can guide pedagogical design and practice in coding courses.HEFCE - Higher Education Funding Council for EnglandInstitute of Codin

    Influence heat-reflective coating on the decrease of heat losses of window constructions

    Get PDF
    Developed theoretical and methodological foundations of the optimal choice of space-planning and constructive decisions of low-rise buildings blocked type, aimed at improving efficiency of investment, energy and resource saving, creation of comfortable conditions for the population, ensure sustainable development of low-rise construction in the context of socio-economic priorities in the climatic zoning of the area of construction
    corecore