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We show that one of the key characteristics of interacting one-dimensional electronic quantum systems, the
separation of spin and charge, can be observed in a two-component system of bosonic ultracold atoms even
close to a competing phase separation regime. To this purpose we determine the real-time evolution of a single
particle excitation and the single particle spectral function using density-matrix renormalization group tech-
niques. Due to efficient bosonic cooling and good tunability this setup exhibits very good conditions for
observing this strong correlation effect. In anticipation of experimental realizations we calculate the velocities
for spin and charge perturbations for a wide range of parameters.
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I. INTRODUCTION

One of the most exciting recent events is the ever-growing
interplay between previously disconnected fields of physics,
such as quantum optics and condensed matter physics. In
particular, cold atomic systems have opened the way to en-
gineer strongly interacting quantum many-body systems of
unique purity. The unprecedented control over interaction
strength and dimensionality allows the realization of “quan-
tum simulators” where fundamental but hard to analyze phe-
nomena in strongly correlated systems could be observed
and controlled. Examples are the observation of superfluid to
Mott insulator transition for Bose gases �1� and the fermion-
ization of strongly interacting one-dimensional bosons �2,3�.

Among interacting systems, the physics depends very
strongly on the dimensionality. In one-dimensional systems
the interactions play a major role and lead to drastically dif-
ferent physics than for their higher dimensional counterpart.
Typically, interactions in one-dimensional systems lead to a
Luttinger liquid state where the excitations of the system are
collective excitations �4�. The importance of such a state for
a large variety of experimental devices in condensed matter
has led to a hunt to observe its properties. A remarkable
consequence of such a state is the absence of single particle
excitations. This means that a quantum particle that would
normally carry both charge and spin degrees of freedom frac-
tionalizes into two different collective excitations, a spin and
a charge excitation. Such a fractionalization of a single par-
ticle excitation is the hallmark of collective effects caused by
interactions. However, just as detecting fractional excitations
in the case of the quantum Hall effect is difficult �5�, observ-
ing spin-charge separation has proven elusive despite several
experimental attempts �6–8�. So far, the best experimental
evidence is provided by tunneling between quantum wires
where interference effects are due to the existence of two
different velocities �9�. However, in these systems it is hard
to quantify or to tune the interaction between the particles
which causes the collective effects. Since control of the in-
teraction is a routing procedure in ultracold gases, the pos-
sible realization of the phenomenon of spin-charge separa-
tion has also been discussed in the context of cold fermionic

gases �10–13� and strongly interacting bosonic gases �14�.
However, proposals to observe spin-charge separation in

ultracold fermionic gases are still plagued by the currently
quite high temperatures in such systems. A much better setup
to test for spin-charge separation would be two-component
Bose gases, for example, using the �F=2,mF=−1� and the
�F=1,mF=1� hyperfine states of 87Rb �15,16�. Experimen-
tally, this system retains the advantages of the fermionic ul-
tracold atom setup while allowing for much lower tempera-
tures due to the more efficient cooling techniques available
for bosons. Theoretical studies �17,18� for one-dimensional
systems predict that close to the experimentally accessible
parameter regime of almost equal interspecies and intraspe-
cies interaction strength phase separation occurs. This is the
remaining potential experimental complication in the setup.

In this work we demonstrate the phenomenon of spin-
charge separation in the experimentally relevant parameter
regime, allowing us to use this system to unambiguously test
for spin-charge separation. We hereby consider a system of
one-dimensional tubes with an additional optical lattice po-
tential applied along the tube directions. We calculate both
the real-time evolution of a single particle excitation and the
dynamical single particle spectral function of the two-
component bosonic systems. We show that both these quan-
tities demonstrate the separation of a single particle excita-
tion into spin and charge. We further determine the velocity
of spin and charge for experimentally relevant parameter
regimes. To perform the calculations we use variants of
the density-matrix renormalization group method �DMRG�
�19,20�. The numerical treatment is necessary to obtain reli-
able predictions for experimental realizations, due to the
close proximity of this regime to phase separation.

II. MODELING SPIN-CHARGE SEPARATION
IN TWO-COMPONENT BOSONIC SYSTEMS

A one-dimensional two-component Bose gas in an optical
lattice �21� can be described by the two-component Bose-
Hubbard model
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Here j is the site index and �=1,2 labels the two different
hyperfine states of the system, b and b† are the annihilation
and creation operators and n̂ is the number operator. The first
term models the kinetic energy of the atoms. The intraspecies
interaction is described by the U� term. We use UªU1
=U2 as it is approximately realized for commonly used hy-
perfine states of 87Rb �22� if not mentioned otherwise. The
interspecies interaction is given by the U12 term and the last
term describes external potentials. In the following we use
the dimensionless parameters u=U /J and u12=U12 /J. We
define the charge density nj,c=nj,1+nj,2 and the spin density
nj,s=nj,1−nj,2. We focus on systems with an average filling
n=� jnj,1 /L=� jnj,2 /L smaller than one particle per site and
parameter regimes of not too large values of u12 for which
the system does not undergo a phase separation. Indeed if u12
becomes too large one can expect phase separation since the
spin exchange between the two spin species becomes domi-
nantly ferromagnetic. In our finite size systems, we numeri-
cally do observe this tendency to phase separate, as indicated
by a much slower convergence of our numerics. The bound-
ary corresponds to u12�u �18�. In the above expressions, L
is the number of sites in the system and a is the lattice
spacing. We use if not stated otherwise �=1, J=1, and a
=1. If the perpendicular oscillator length of the system is
larger than the 3D scattering length, the connection between
the experimental parameters, the optical lattice depth and the
scattering lengths, to the theoretical parameters of the Bose-
Hubbard model can be made using the tight binding approxi-
mation �21�.

In the superfluid phase for low interaction strength or
more precisely if the dimensionless parameter �=u / �2nc�
�1 and �12=u12 / �2nc��1 are small, the Bose-Hubbard
model can directly be mapped onto a continuous model by
taking Ja2=const and a→0. In this limit the Bose-Hubbard
model becomes equivalent to the Lieb-Liniger model
�23,24�. The Hamiltonian for two bosonic species is

HLL =	 dx �
�=1,2


 1

2M
��x���x��2 + V�x���

†�x����x�

+
g

2
���

†�x��2����x��2�
+

g12

2
	 dx��1

†�x��1�x����2
†�x��2�x�� . �2�

Here ��†� is the bosonic annihilation �creation� operator, V is
the external potential, and g and g12 are the strengths of the
intraspecies and interspecies interaction, respectively. In this
limit, the hopping parameter of the lattice model is related to
the mass M of the atoms by Ja2= 1

2M , the interaction strength
to the �-interaction strength by Ua=g and U12a=g12, and the
density � to the filling factor n by �a=n. A discussion of the
validity of this mapping for one-component gas focusing on

the value of the sound velocity is presented in Ref. �25�. In
the hydrodynamic approximation �26� the sound velocities of
this model are given by

vc,s = v0
�1 ± g12/g , �3�

with

v0 = �g�/M . �4�

As in the case of a single component gas this expression for
the velocity is only valid for low values of �c=Mg /� �25�.
For the special case g12=g the sound velocity has been de-
termined using the Bethe ansatz �27,28�.

In a superfluid phase away from the transition to phase
separation the low energy physics can be approximated by a
density-phase representation of the bosons as used in the
bosonization method �4,29�. The description of the low en-
ergy properties of the Bose-Hubbard model by the bosoniza-
tion approach is valid for a wider parameter regime than the
continuum limit equation �2�. In particular it does not rely on
the low-filling limit as the continuum limit equation �2�. The
bosonization description is a density-phase representation of
the bosons �4,29�, i.e., the density is expressed as ���x�
���0− 1

	�x
���m=−�
� exp2ım�
��x�+	�0x� and the single boson

operator as ���x��expı��x� ���x�1/2, where �0 is the average
density, and 1

	�x
� and � are conjugate operators.
In this representation the Hamiltonian of the two-

component Bose gas is totally separated into one part for the
charge and one part for the spin degrees of freedom �30�,

H = Hc + Hs �5�

with

Hc =
1

2	
	 dx
vcKc��c�2 +

vc

Kc
��x
c�2� �6�

and

Hs =
1

2	
	 dx
vsKs��s�2 +

vs

Ks
��x
s�2�

+
g12

�	�−1�2	 dx cos��8
s� . �7�

The physics is fully determined by the velocities vc,s and the
so-called Luttinger parameters Kc,s for spin �s� and charge
�c�. Therefore, the separation of a single particle excitation
into spin and charge excitations is expected. Note that the
phenomenon of a complete decoupling merely requires the
presence of two flavors of particles; the SU�2� symmetry of
electronic spin is not necessary. In fact, expressing real spin
via two flavors of Schwinger bosons matches our identifica-
tion, except that for full SU�2� symmetry a local constraint
nj,1+nj,2=1 would have to be enforced, corresponding to di-
verging interspecies and intraspecies particle repulsion at
density 1. The parameters of two interacting species of
bosons can be related to the parameters K and v0 for the
single species case �30� by
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vc,s = v0
�1 ± �g12K�/�	v0� �8�

and

Kc,s = K/�1 ± �g12K�/�	v0� .

In the limit of small interactions, the single species param-
eters K and v0 can be directly related to the Lieb-Liniger
model and to the Bose-Hubbard Hamiltonian equation �1�
�4�. In this regime the expressions of the sound velocity of
the continuum description are recovered. For higher values
of the interaction strength if one assumes bosonization to be
justified, the relation of the parameters of the Bose-Hubbard
model to the universal parameters K and v0 even for the
single species situation is unknown. This relation must be
determined numerically �25�. For a two-component mixture
with large values of the interspecies interaction of the order
of the intraspecies interaction—which is the experimentally
relevant case—the system approaches the transition to phase
separation. In the regime of phase separation the bosoniza-
tion approach breaks down.

III. EVIDENCE OF SPIN-CHARGE SEPARATION

Snapshots of the real time evolution of a single particle
excitation in a two-component bosonic system are shown in
Fig. 1. The single particle excitation at time t=0 is prepared
by the application of the creation operator of one species,
say 1, on site L /2 to the ground state ��0�, i.e., bL/2,1

† ��0�.
The resulting sharp peaks in the density distributions are
shown in Fig. 1�a�. For t�0 the time evolution of the single
particle excitation is calculated using the adaptive time-
dependent DMRG �31,32�. The time-evolution is performed
using a Krylov algorithm �33� in a matrix product state basis
with a fixed error bound for each time step of the order of
���t+�t��−exp�−iH�t����t��2�10−5. The step size �t
=0.2� /J and 6 to 10 Krylov vectors were used resulting in
Hilbert spaces with a local dimension of a few thousand
states. As can be seen in the snapshots in Fig. 1 the initial
single particle excitation splits up into two counterpropagat-
ing density waves. Due to their different spin and charge
velocities, after a period of time a clear separation of the
density waves is seen �cf. Fig. 1�c�� �47�. Note that the cho-
sen parameters correspond to an experimentally relevant
situation of a mixture of 87Rb using the �F=2,mF=−1� and
the �F=1,mF=1� hyperfine states adjusting the scattering
length to a12=80aB �for more details see discussion on ex-
perimental parameters�.

Additionally to the time evolution of a single particle ex-
citation, we obtained the single particle spectral function
A�q ,��= 1

	 Im�bq,1
1

H−�−ı�−E0
bq,1

† � as shown in Fig. 2. For fer-
mions this function is known to exhibit two peaks at the spin
and charge excitation energies �34,35�, showing a direct sig-
nature of the spin-charge separation. For the bosons comput-
ing this spectral function is more involved and up to very
recently it was only derived for a single-component bosonic
system �36–38�. An expression for the correlation functions
which allows us to obtain the single particle correlation func-
tion within the bosonization treatment for a two-component
bosonic system was derived in �39�. Power law singularities

at qvc,s are obtained with respective exponents 1 /4Kc,s
+1 /2Ks,c−1. For the values of the Luttinger parameters �as
shown in Fig. 2� one thus expects two divergent peaks. We
show in Fig. 2 the full spectral function for our microscopic
model, as calculated numerically using a matrix product state
generalization of the correction vector method �37,40�. Our
results show clearly the appearance of the two separated
peaks, the lower representing the spin and the upper the
charge excitation branch. The positions are close to the pre-
dicted values vc,sq of bosonization results. The discrepancy
can be attributed to the band curvature that exists in the
microscopic model and which in the bosonization is taken to
be a strictly linear dispersion relation. Thus, both the real
time evolution of a single particle function and the single
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FIG. 1. �Color online� Snapshots of the time evolution of the
charge- and spin-density distribution of a single particle excitation
created at time t=0� /J: �a� at time t=0� /J, �b� at time t=1.5� /J,
and �c� at time t=2.5� /J. The system parameters are n1,2=0.625,
U1 /J=2.983, U2 /J=2.712, U12 /J=2.377. The charge density is
shifted by 1.25 for better visibility. The arrows in �c� mark the clear
separation of the charge- and the spin-density waves.
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particle spectral function show clear signatures of separation
of spin and charge.

IV. DETERMINATION OF THE SPIN
AND CHARGE VELOCITIES

To observe the separation of spin and charge excitations
experimentally in a system of ultracold bosons, knowledge
of the spin and charge velocities is indispensable. This is
since currently spectral functions are not accessible, merely a
direct observation of the evolution of density perturbations.
As the spatial range of the experimental setups is small, a
substantial difference in velocities is required to observe an
effect on the available length scales. We therefore deter-
mined the velocities for a wide range of parameters. This
was done calculating the time evolution of a small spin- and
charge-density perturbation, respectively. The density pertur-
bation was created at time t=0 applying an external potential

of Gaussian form ��,j =�0 exp�−
�j−j0�2

2� j
�, where �=c ,s. At

time t=0 the potential is switched off and the time evolution
of the density perturbation is calculated. The errors in the
obtained velocities are of the order of 0.01aJ /� for small u12
and increase with larger u12.

In Fig. 3 we show the dependence of the velocities on the
interspecies interaction for two different values of the param-
eter �. For both parameter regimes, the charge velocity in-
creases with increasing interaction whereas the spin velocity
decreases. Therefore as u12 increases, the difference between
the charge and the spin velocities becomes larger. For a van-
ishing interspecies interaction it was shown in Ref. �25� that
for ��1 the bosonization and the solution of the exactly
solvable Lieb-Liniger model agree approximately with the
velocities in the Bose-Hubbard model. In Fig. 3�a� we find
for ��1.1 very good agreement with the analytical solutions
up to interspecies interaction strength u12�1.5. For ��2.4
�cf. Fig. 3�b�� even for vanishing interspecies interaction the
deviations from the direct relation between the parameters in
the Bose-Hubbard model are considerable �cf. �25��. How-
ever, we find that the dependence of the velocities on the

interspecies interaction strength via Eq. �8� is still a good
approximation up to u12�1.5 correcting by the numerically
determined value for v0 and K. As is obvious from Fig. 3 for
larger values u12�u the results for the spin velocity start to
deviate for both values of � from the perturbative relation
�8�. Our numerical results provide an accurate determination
of the velocities in this regime, hard to access analytically,
since the perturbative expression �8� becomes inaccurate. If
the intraspecies interaction u12 becomes too large, the spin
velocity ultimately goes to zero. The spin excitations are
characterized around that point by strong damping and
strong diffusion, and we cannot numerically compute their
exact velocity close to phase transition. This phase transition
corresponds to a dominantly ferromagnetic ground state and
thus to phase separation. The dispersion of the spin excita-
tions beyond the phase transition point is not longer linear
but becomes parabolic �27�. The physics in this regime is
thus radically different �46� from the one of a Luttinger liq-
uid with linear modes and requires a totally different analy-
sis. In order to test for the spin-charge separation in a Lut-
tinger liquid, it is thus important to stay below this point, but
at the same time to have a large velocity difference to make
the observation easier. In that perspective an optimal regime
to test for the spin-charge separation and make a quantitative
comparison with our numerical results is around u12=2 /3u,
where our numerical results can provide qualitatively accu-
rate results for the velocities for comparison with the experi-
mentally measured ones.
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FIG. 2. One-particle spectral function at momentum q
=20 /65	 /a. Two peaks corresponding to the spin and the charge
excitations can be distinguished. The vertical lines mark the posi-
tion of vc,sq. The following parameters were used: n=0.625, u=3,
u12=2.1 on a system with L=64 sites and a broadening �=0.1.
Restoring the units, the x axis is J /�.
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FIG. 3. �Color online� Dependence of the charge and spin ve-
locities on the interparticle interaction strength for �a� u=2 and n
�0.88 and �b� u=3 and n�0.63. A comparison of analytical results
�line, see text� and numerical DMRG results �symbols� is shown.
Restoring the units of the velocities, they are measured in units
aJ /�. Note that the errors of the DMRG results increase close to
u12�u.
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In Fig. 4 we show for two different fixed interspecies
interaction strengths the dependence of the velocities on the
density. The charge and the spin velocities rise with increas-
ing background charge density. �Note, even at nc=1 the sys-
tem is in the superfluid regime.� The increase of the veloci-
ties is described to good accuracy using the perturbative
form �8�, provided we use numerically obtained values of K
and v0. For large u12 and small nc the results for the veloci-
ties from DRMG, in particular the spin velocity, deviate con-
siderably from Eq. �8�, showing that the approximate relation
cannot be used in this regime. Our finding of the dependen-
cies can be used to predict the velocities for experimentally
interesting parameter regimes.

V. EXPERIMENTAL REALIZATION

In recent experiments for the preparation of a mixture of
two bosonic components in optical lattices mostly two hy-
perfine states of 87Rb are used, e.g., the �F=2,mF=−1� and
the �F=1,mF=1� hyperfine states. The intraspecies scattering
lengths are a2=91.28aB and a1=100.4aB �22�, respectively,
where aB is the Bohr radius. For these states the interspecies

scattering length is of the same order of magnitude as the
intraspecies scattering length and can be tuned about 20%
using a Feshbach resonance �16,15�. Thereby the experimen-
tal parameters are close to the competing phase separation
regime. These mixtures can be confined to one-dimensional
structures using strongly anisotropic lattices �2,3,41,42�. The
experimental parameters in such a system are related to the
parameters of the two-component Bose-Hubbard model. For
example, in Fig. 1 we used the parameters corresponding to
the experimental situation with scattering length a12=80aB
and a lattice height of V0=4.3Er. The most intuitive obser-
vation of the phenomenon of spin-charge separation in these
systems is to generate a single particle excitation and then
follow the evolution of the excitation in real time. This can
be done measuring the spin-resolved density over a certain
region. The creation of a single particle excitation can be
done, e.g., using out coupling of single particles by the ap-
plication of a magnetic field gradient for addressability and a
microwave field �43–45�. The magnetic field gradient can be
applied since the two hyperfine states have approximately
the same magnetic moment. The efficiency of such a tech-
nique for generating single particle excitations was demon-
strated �44� using a cavity. The microwave field could be
chosen to couple the �F=1,mF=1� hyperfine state to, e.g.,
the �F=2,mF=2�. This has the advantage that scattering with
the �F=1,mF=1� state is suppressed. The measurement of
the density resolved over a region of approximately 10 lattice
sites can then be performed using again the magnetic field
gradient to get an unambiguous signal.
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