1,641 research outputs found

    A Variable Metric Probabilistic k-Nearest-Neighbours Classifier

    Get PDF
    Copyright © 2004 Springer Verlag. The final publication is available at link.springer.com5th International Conference, Exeter, UK. August 25-27, 2004. ProceedingsBook title: Intelligent Data Engineering and Automated Learning – IDEAL 2004k-nearest neighbour (k-nn) model is a simple, popular classifier. Probabilistic k-nn is a more powerful variant in which the model is cast in a Bayesian framework using (reversible jump) Markov chain Monte Carlo methods to average out the uncertainy over the model parameters.The k-nn classifier depends crucially on the metric used to determine distances between data points. However, scalings between features, and indeed whether some subset of features is redundant, are seldom known a priori. Here we introduce a variable metric extension to the probabilistic k-nn classifier, which permits averaging over all rotations and scalings of the data. In addition, the method permits automatic rejection of irrelevant features. Examples are provided on synthetic data, illustrating how the method can deform feature space and select salient features, and also on real-world data

    Overcoming the fear: an autoethnographic narrative of running with epilepsy

    Get PDF
    Through a phenomenological approach, this article explores the identity conflict that arose within a female runner after diagnosis with epilepsy. Utilising a three month autoethnography to track her experiences of returning to running, the first author narrates the effect of epilepsy on her identity formation. Providing a voice that is absent from a research area dominated by statistics, the reader is asked to involve him/herself in the world of this athlete and in turn embrace the use of narratives as a valuable coping mechanism for those with chronic disorders

    Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society

    The dermal skeleton of the jawless vertebrate Tremataspis mammilata (Osteostraci, stem-Gnathostomata)

    Get PDF
    Osteostracans are the closest jawless relatives of jawed vertebrates, informing the gradual assembly of the vertebrate mineralised skeleton. Conflicting interpretations of their dermal skeletal histology arise from failure to account for topological variation, obscuring their significance in elucidating vertebrate skeletal evolution. To resolve this, we characterize the cranial and trunk dermal skeleton of a single individual of Tremataspis mammilata (Osteostraci, Thyestiida) at submicron resolution using synchrotron tomography. Our results show that the architecture of the Tremataspis dermal skeleton is, for the most part, conserved over the skeleton and is broadly consistent with previous histological hypotheses based on 2-dimensional thin section study. We resolve debate over the homology of the basal layer, identifying it as osteogenic acellular isopedin rather than odontogenic elasmodine or metaplastic ossification of the stratum compactum of the dermis. We find topological variation between all dermal skeletal elements studied, and particularly between the cranial and postcranial dermal skeleton. This variation can be largely explained by reduction in differentiation due to geometric constraints imposed within smaller skeletal elements, such as scales. Our description of the dermal skeleton of Tremataspis mammilata provides a foundation for interpreting data from cursory topological samples of dermal skeletal diversity obtained in other osteostracans. This reveals general aspects of histological structure that must be primitive for osteostracans and, likely, ancestral jawed vertebrates. Finally, we draw the distinction between hypotheses and descriptions in palaeohistology

    Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    Full text link
    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure

    Design and Bolometer Characterization of the SPT-3G First-year Focal Plane

    Get PDF
    During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 201

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct
    • …
    corecore