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12:48 30th March 2004Abstract The k -nearest neighbour (k -nn) model is a simple, popular
classifier. Probabilistic k -nn is a more powerful variant in which the
model is cast in a Bayesian framework using (reversible jump) Markov
chain Monte Carlo methods to average out the uncertainy over the model
parameters.
The k -nn classifier depends crucially on the metric used to determine
distances between data points. However, scalings between features, and
indeed whether some subset of features is redundant, are seldom known a

priori. Here we introduce a variable metric extension to the probabilistic
k -nn classifier, which permits averaging over all rotations and scalings of
the data. In addition, the method permits automatic rejection of irrelev-
ant features. Examples are provided on synthetic data, illustrating how
the method can deform feature space and select salient features, and also
on real-world data.

1 Introduction

One of the most popular methods of statistical classification is the k -nearest
neighbour model (k -nn). Although the method has a ready statistical interpret-
ation, and has been shown to have an asymptotic error rate no worse than twice
the Bayes error rate [1], it appears in symbolic AI under the guise of case-based
reasoning. The method is essentially geometrical, assigning the class of an un-
known exemplar to the class of the majority of its k nearest neighbours in some
training data. More precisely, in order to assign to a datum x ∈ R

D a class y,
given the known training data D = {yi,xi}N

i=1, the k -nn method first calculates
the distances di = ||x − xi||. If there are Q classes, each of which is a priori

equally likely, the probability that x belongs to the q-th class is then evaluated
as p(y |x, k,D) = kq/k, where kq is the number of the k data points with the
smallest di belonging to class q.

Classification thus crucially depends upon the metric used to determine the
distances di. Usual practice is to normalise the data so that each of the D
coordinates has, say, unit variance, after which Euclidean distance is used. How-
ever, as others have shown and we illustrate here, this may result in suboptimal
classification rates. In this paper we use a variable metric of the form

d(x1,x2) = {(x1 − x2)
T M(x1 − x2)}

1/2 (1)
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where M is a D × D symmetric matrix. Rather than seek a single, optimal
metric we adopt the Bayesian point of view and average over all metrics each
weighted by its posterior probability. Essential to this programme is Holmes &
Adams’ [2] recent recasting of the k -nn model in a Bayesian framework, which
we briefly describe in the remainder of this section. In section 2 we describe how
the k -nn model may be augmented with a variable metric. Illustrative results
are presented in section 3 and the paper concludes with a brief discussion.

1.1 The probabilistic k-nn model

Holmes & Adams [2] have extended the traditional k -nn classifier by adding a
parameter β which controls the ‘strength of association’ between neighbours.
The likelihood of the data given parameters θ = {k, β} is defined as

p(D |θ) =

N
∏

i=1

exp[β
∑k

xj∼xi
u(d(xi,xj))δyiyj

]
∑Q

q=1 exp[β
∑k

j∼i u(d(xi,xj))δqyj
]
. (2)

Here δmn is the Kronecker delta and
∑k

xj∼xi
means the sum over the k nearest

neighbours of xi (excluding xi itself). If the non-increasing function of distance

u(·) = 1/k, then the term
∑k

xj∼xi
u(d(xi,xj))δyiyj

counts the fraction of nearest
neighbours of k in the same class yi as xi. In the work reported here we choose u
to be the tricube kernel [3] which gives decreasing weight to distant neighbours.

Holmes & Adams implement an efficient reversible jump Markov chain Monte
Carlo (RJMCMC) [4,5] scheme to draw samples θ

(t) = {k(t), β(t)} from the
posterior distribution of the parameters p(θ | D). Uncertainty in k and β when
classifying x can then be taken into account by averaging over all values of k
and β:

p(y |x,D) =

∫

p(y |x, θ,D)p(θ | D) dθ ≈
1

T

T
∑

t=1

p(y |x, θ(t),D) (3)

where the predictive likelihood is

p(y |x, θ,D) =
exp[β

∑k
xj∼x

u(d(x,xj))δyyj
]

∑Q
q=1 exp[β

∑k
xj∼x

u(d(x,xj))δqyj
]
. (4)

2 Variable metric and feature selection

The relative scales on which features are measured are not usually clear a priori

and the standard practice of normalisation to zero mean and unit variance may
be detrimental to the overall classification rate. Many classifiers, such as linear
discriminators or neural networks, discriminate on the basis of linear or nonlinear
weighted combinations of the feature variables; these weights are adjusted during
learning and may thus compensate for improper scaling of the data. The k -nn
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Figure 1. Samples from 3-dimensional Dirichlet distribution. Left: Non-informative,
Dir(1, 1, 1). Right: Sparse distribution, Dir(0.2, 0.2, 0.2).

classifier contains no such implicit scaling, making classifications on the basis of
the exemplars within a spherical region of feature space. In order to compensate
for this, we therefore adopt a metric of the form (1).

It is useful to write M = QΛQT , where Λ is a diagonal matrix with non-
negative entries λd on the diagonal, and Q is an orthogonal matrix. Then writing
x̂ = Λ

1/2Qx shows that using metrics of this form is equivalent to rotating and
scaling the data before using the standard Euclidean distance.

The M = QΛQT decomposition is convenient for setting priors as well as for
computation. We augment the parameters θ of the probabilistic k -nn classifier
with Q and λ = diag(Λ), and extend the Holmes & Adams RJMCMC sampler
to draw samples from the joint posterior density p(k, β, λ,Q | D). The likelihoods
(2) and (4) are unchanged except that d(·, ·) depends upon λ and Q.

Priors. As in the probabilistic k -nn model [2], we adopt a uniform prior p(k) =
min(1/kmax, N), with kmax = 250. The prior on β expresses a mild preference
for small β: p(β) = 2N (0, 100)I(β > 0), where I(·) is the set indicator function.

Since we usually have no a priori preference for a particular rotation, a
uniform prior over Q is appropriate. The prior for λ is taken to be a uniform
Dirichlet density:

p(λ) = Dir(λ |α, . . . , α). (5)

This prior ensures that λd ≥ 0 so that M is non-negative definite; changes of
sign in the scalings are irrelevant to the classification. In addition, only relative
scales are important, which is enforced by fact that the weights λd are confined
to a (D − 1)-dimensional simplex:

∑D
d=1 λd = 1. The parameter α determines

the shape of the prior distribution. As Figure 1 shows, when α = 1 the prior is
non-informative so that all scalings (points on the simplex) are equally likely.
Setting α > 1 encodes a belief that the scalings should be the same for each
variable. Here it is more useful to set α < 1 which reflects a belief that the
scale factors are unequal, although as Figure 1 illustrates, no particular feature
is favoured. If particular features or (with rotations by Q) linear combinations of
features are likely to be irrelevant, setting α < 1 is tantamount to a sparse prior
over the scalings, leading to the suppression of irrelevant feature combinations.
Here we have used a mildly sparse prior, α = 0.8.
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Sampling. The Holmes & Adams RJMCMC sampler makes reversible proposals
(k′, β′) from the current (k, β). To sample from the full parameter set we make
additional proposals Q′ and λ

′; the proposal (k′, β′, λ′,Q′) being accepted with
probability:

min

{

1,
p(D | k′, β′, λ′,Q′)

p(D | k, β, λ,Q)

p(λ′)

p(λ)

p(β′)

p(β)

p(λ |λ′)

p(λ′ |λ)

}

. (6)

Proposals to change the scaling are made from a Dirichlet whose expected
value is the current λ; thus λ

′ ∼ Dir(cλ) [6]. Proposals are thus centred on λ

with their spread controlled by c, which is chosen during burn-in to achieve a
satisfactory acceptance rate; in the work reported here c = 400. The proposal
ratio for λ can be shown to be

p(λ |λ′)

p(λ′ |λ)
=

D
∏

d=1

(λ′

d)cλd−1Γ (cλ′

d)

(λd)cλ′

d
−1Γ (cλd)

. (7)

To ensure that Q is orthogonal, we use Cayley coordinates in which Q is
represented as the matrix exponential Q = exp(S) of a skew-symmetric matrix
S = −ST . Consequently S has D(D − 1)/2 independent entries corresponding
to the D(D − 1)/2 degrees of freedom in a D-dimensional orthogonal matrix.

Proposals Q′ are generated by perturbing S as follows: S′ = S + R − RT ,
where Rij ∼ N (0, σ2). The variance of the perturbations to S is adjusted during
burn-in to achieve a satisfactory acceptance rate. If the perturbations to S are
symmetric, it is straightforward to show that p(Q′ |Q) = p(Q |Q′), so there is
no contribution to the acceptance probability (6) from the Q proposal ratio.

3 Illustration

We first illustrate the ability of the variable metric to deal with scaled, rotated
and irrelevant data by applying it to synthetic data. We then apply it to well-
known problems from the UCI machine learning repository [7].

The ability of the variable metric to adjust and compensate for improp-
erly scaled data can be illustrated by the data show in Figure 2. These two-
dimensional, two-class data are separated by an elliptical boundary which is
rotated with respect to the coordinate axes; there are 500 training and 284 test-
ing examples. Although the variances of the data projected onto either of the
features are equal, optimal classification is achieved if the data are rotated and
scaled so that the class boundary is roughly circular.

As an initial illustration we consider the ellipse data, but with the axes of the
ellipse aligned with the coordinate axes. As shown in Table 1, the probabilistic k -
nn has a misclassification rate of 2.82%, whereas for the variable metric method
the error is lowered to 1.76%. The mean posterior scaling factors are λ̄1 = 0.37
and λ̄2 = 0.63, which is close to the ratio 1 : 2, the ratio of ellipse axes.

Simple scaling of the data is insufficient to render the class boundary circular
when the class boundary ellipse is not aligned with the coordinate axes (see
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Figure 2. Left: Synthetic data with rotated elliptical class boundaries. Right: Samples
from posterior λ for synthetic rotated data, with an additional irrelevant feature.

Table 1. Mean classification error (%) for probabilistic and variable metric k -nn.

Ellipse UCI
Scaled Rotated Irrel. Ion. Pima Wine

MAP β = 1 k -nn 2.82 2.82 6.69 7.94 26.04 4.49

probabilistic k -nn 2.82 2.82 4.23 5.30 22.92 3.37

variable metric k -nn 1.76 1.41 1.41 1.99 21.35 1.12

Figure 2); and the misclassification error is 3.16% for a variable metric method
but with Q = I fixed. However, permitting Q to vary recovers the lower error
rate, and the mean posterior Q corresponds to rotations of ±45◦.

As a final illustration on synthetic data, we add to the ellipse data a third
variable x3 which is irrelevant to classification. The right hand panel of Figure 2
shows samples from posterior distribution of λd. It can be see that the irrelevant
direction, corresponding here to λ3, has been effectively suppressed so that the
posterior λ is very close to the two-dimensional simplex λ1 + λ2 = 1.

We also evaluate the performance of the variable metric k -nn classifier on
three well-known data sets [7]. The Ionosphere dataset comprises 33 inputs,
with 200 training and 151 test examples. The Pima indian diabetes data has 8
predictive variables. A priori choice of a metric here is difficult as these variables
are measured in disparate units (e.g., kg/m2, years, mm Hg). They were all
normalised to zero mean and unit variance before classification. There were 576
training and 192 test samples. The Wine recognition data set has 13 continuous
features on the basis of which an instance should be assigned to one of three
classes. There is no standard training/test split for these data, so they were
partitioned at random into training and test sets, each with 89 examples.

Following 105 burn-in MCMC steps, 104 samples (every 7th step) were collec-
ted for classification. Table 1 compares mean classification rates for the standard
probabilistic k -nn method, the maximum a posteriori standard probabilistic k -
nn classifier with β held at 1 and the variable metric model. The additional
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flexibility in the variable metric method clearly permits better classification,
achieving rates at least has high as those reported elsewhere, e.g., [8].

4 Conclusion

We have presented a straightforward scheme for learning a metric for the prob-
abilistic k -nn classifier. Results on synthetic data and real data show that the
variable metric method yields improved mean classification rates and is able to
reject irrelevant features. The variable metric methods presented here are par-
ticularly pertinent for k -nn classifiers, which otherwise have no mechanism for
learning the data scaling, but the method can be applied to other classifiers.
Although the variable metric method yields improved classification rates, it is
computationally more expensive than fixed metric methods because distances
must be recomputed for each (λ(t),Q(t)) sample.

Here we have considered only linear scalings and rotations of the data. Cur-
rent work involves expanding the class of metrics to include Minkowski metrics
in the rotated space. Finally, we remark that it would be valuable to extend the
considerable work (e.g., [9]) on local variable metrics to the Bayesian context.
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