5,571 research outputs found

    Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain

    Get PDF
    The neural capacity to discriminate between emotions emerges early in development, though little is known about specific factors that contribute to variability in this vital skill during infancy. In adults, DNA methylation of the oxytocin receptor gene (OXTRm) is an epigenetic modification that is variable, predictive of gene expression, and has been linked to autism spectrum disorder and the neural response to social cues. It is unknown whether OXTRm is variable in infants, and whether it is predictive of early social function. Implementing a developmental neuroimaging epigenetics approach in a large sample of infants (N = 98), we examined whether OXTRm is associated with neural responses to emotional expressions. OXTRm was assessed at 5 months of age. At 7 months of age, infants viewed happy, angry, and fearful faces while functional near-infrared spectroscopy was recorded. We observed that OXTRm shows considerable variability among infants. Critically, infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling. Findings support models emphasizing oxytocin's role in modulating neural response to emotion and identify OXTRm as an epigenetic mark contributing to early brain function

    Bioreactor scalability: laboratory-scale bioreactor design influences performance, ecology, and community physiology in expanded granular sludge bed bioreactors

    Get PDF
    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance

    Characterizing the universal rigidity of generic frameworks

    Full text link
    A framework is a graph and a map from its vertices to E^d (for some d). A framework is universally rigid if any framework in any dimension with the same graph and edge lengths is a Euclidean image of it. We show that a generic universally rigid framework has a positive semi-definite stress matrix of maximal rank. Connelly showed that the existence of such a positive semi-definite stress matrix is sufficient for universal rigidity, so this provides a characterization of universal rigidity for generic frameworks. We also extend our argument to give a new result on the genericity of strict complementarity in semidefinite programming.Comment: 18 pages, v2: updates throughout; v3: published versio

    Frailty exists in younger adults admitted as surgical emergency leading to adverse outcomes

    Get PDF
    Background: Frailty is prevalent in the older adult population (≥65 years of age) and results in adverse outcomes in the emergency general surgical population. Objective: To determine whether frailty exists in the younger adult emergency surgical population (<65 years) and what influence frailty may have on patient related outcomes. Design: Prospective observational cohort study. Setting: Emergency general surgical admissions. Participants: All patients ≥40 years divided into 2 groups: younger adults (40-64.9 years) and older adult comparative group (≥65). Measurements: Over a 6-month time frame the following data was collected: demographics; Scottish Index of Multiple Deprivation (SIMD); blood markers; multi-morbidities, polypharmacy and cognition. Frailty was assessed by completion of the Canadian Study of Health and Ageing (CSHA). Each patient was followed up for 90 days to allow determination of length of stay, re-admission and mortality. Results: 82 young adults were included and the prevalence of frailty was 16% (versus older adults 38%; p=0.001) and associated with: multi-morbidity; poly-pharmacy; cognitive impairment; and deprivation. Frailty in older adults was only significantly associated with increasing age. Conclusions: This novel study has found that frailty exists in 16% of younger adults admitted to emergency general surgical units, potentially leading to adverse short and long-term outcomes. Strategies need to be developed that identify and treat frailty in this vulnerable younger adult population

    Shape models and physical properties of asteroids

    Full text link
    Despite the large amount of high quality data generated in recent space encounters with asteroids, the majority of our knowledge about these objects comes from ground based observations. Asteroids travelling in orbits that are potentially hazardous for the Earth form an especially interesting group to be studied. In order to predict their orbital evolution, it is necessary to investigate their physical properties. This paper briefly describes the data requirements and different techniques used to solve the lightcurve inversion problem. Although photometry is the most abundant type of observational data, models of asteroids can be obtained using various data types and techniques. We describe the potential of radar imaging and stellar occultation timings to be combined with disk-integrated photometry in order to reveal information about physical properties of asteroids.Comment: From Assessment and Mitigation of Asteroid Impact Hazards boo

    Reanalysis of Farmer Willingness to Tolerate Deer Damage in Western New York

    Get PDF
    Crop depredation by white-tailed deer (Odocoileus uirginianus) has been examined and discussed by wildlife managers since at least the early 1930\u27s (Leopold 1933:283). As with most aspects of game management in those early years, managers\u27 efforts focused on the biological parameters of depredation and control. In the 1960\u27s a few researchers began examining the social implications of deer management and found farmers to be surprisingly tolerant of most deer damage (McDowell and Benson 1960, McNeil 1962:81, Flyger and Thoerig 1962:48). Because of changing agricultural, habitat, and deer population conditions, studies of farmer tolerance of deer damage were initiated in New York (Brown et al. 1977, 1978, 1979, 1980). This research helped to systematically quantify and apply the concept of farmer tolerance of deer damage as a determinant of deer range carrying capacity on agricultural lands in New York State

    Clinical and Experimental Applications of NIR-LED Photobiomodulation

    Get PDF
    This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction

    Epigenetic dynamics in infancy and the impact of maternal engagement

    No full text
    The contribution of nature versus nurture to the development of human behavior has been debated for centuries. Here, we offer a piece to this complex puzzle by identifying the human endogenous oxytocin system—known for its critical role in mammalian sociality—as a system sensitive to its early environment and subject to epigenetic change. Recent animal work suggests that early parental care is associated with changes in DNA methylation of conserved regulatory sites within the oxytocin receptor gene (OXTRm). Through dyadic modeling of behavior and OXTRm status across the first year and a half of life, we translated these findings to 101 human mother-infant dyads. We show that OXTRm is dynamic in infancy and its change is predicted by maternal engagement and reflective of behavioral temperament. We provide evidence for an early window of environmental epigenetic regulation of the oxytocin system, facilitating the emergence of individual differences in human behavior
    • …
    corecore