1,864 research outputs found

    Keeping Your Eyes Continuously on the Ball While Running for Catchable and Uncatchable Fly Balls

    Get PDF
    When faced with a fly ball approaching along the sagittal plane, fielders need information for the control of their running to the interception location. This information could be available in the initial part of the ball trajectory, such that the interception location can be predicted from its initial conditions. Alternatively, such predictive information is not available, and running to the interception location involves continuous visual guidance. The latter type of control would predict that fielders keep looking at the approaching ball for most of its flight, whereas the former type of control would fit with looking at the ball during the early part of the ball's flight; keeping the eyes on the ball during the remainder of its trajectory would not be necessary when the interception location can be inferred from the first part of the ball trajectory. The present contribution studied visual tracking of approaching fly balls. Participants were equipped with a mobile eye tracker. They were confronted with tennis balls approaching from about 20 m, and projected in such a way that some balls were catchable and others were not. In all situations, participants almost exclusively tracked the ball with their gaze until just before the catch or until they indicated that a ball was uncatchable. This continuous tracking of the ball, even when running close to their maximum speeds, suggests that participants employed continuous visual control rather than running to an interception location known from looking at the early part of the ball flight.</p

    Quantum Interference Effects in Electronic Transport through Nanotube Contacts

    Get PDF
    Quantum interference has dramatic effects on electronic transport through nanotube contacts. In optimal configuration the intertube conductance can approach that of a perfect nanotube (4e2/h4e^2/h). The maximum conductance increases rapidly with the contact length up to 10 nm, beyond which it exhibits long wavelength oscillations. This is attributed to the resonant cavity-like interference phenomena in the contact region. For two concentric nanotubes symmetry breaking reduces the maximum intertube conductance from 4e2/h4e^2/h to 2e2/h2e^2/h. The phenomena discussed here can serve as a foundation for building nanotube electronic circuits and high speed nanoscale electromechanical devices

    Resonant decay of flat directions

    Full text link
    We study preheating, i.e., non-perturbative resonant decay, of flat direction fields, concentrating on MSSM flat directions and the right handed sneutrino. The difference between inflaton preheating and flaton preheating, is that the potential is more constraint in the latter case. The effects of a complex driving field, quartic couplings in the potential, and the presence of a thermal bath are important and cannot be neglected. Preheating of MSSM flat directions is typically delayed due to out-of-phase oscillations of the real and imaginary components and may be preceded by perturbative decay or QQ-ball formation. Particle production due to the violation of adiabaticity is expected to be inefficient due to back reaction effects. For a small initial sneutrino VEV, ≲mN/h \lesssim m_N/h with mNm_N the mass of the right handed sneutrino and hh a yakawa coupling, there are tachyonic instabilities. The DD-term quartic couplings do not generate an effective mass for the tachyonic modes, making it an efficient decay channel. It is unclear how thermal scattering affects the resonance.Comment: 20 pages, 4 figure

    Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses

    Full text link
    In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience (published

    Ebstein’s anomaly may be caused by mutations in the sarcomere protein gene MYH7

    Get PDF
    Ebstein's anomaly is a rare congenital heart malformation characterised by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. Associated abnormalities of left ventricular morphology and function including left ventricular noncompaction (LVNC) have been observed. An association between Ebstein's anomaly with LVNC and mutations in the sarcomeric protein gene MYH7, encoding β-myosin heavy chain, has been shown by recent studies. This might represent a specific subtype of Ebstein's anomaly with a Mendelian inheritance pattern. In this review we discuss the association of MYH7 mutations with Ebstein's anomaly and LVNC and its implications for the clinical care for patients and their family members.Congenital Heart Diseas

    Curvatons in Supersymmetric Models

    Full text link
    We study the curvaton scenario in supersymmetric framework paying particular attention to the fact that scalar fields are inevitably complex in supersymmetric theories. If there are more than one scalar fields associated with the curvaton mechanism, isocurvature (entropy) fluctuations between those fields in general arise, which may significantly affect the properties of the cosmic density fluctuations. We examine several candidates for the curvaton in the supersymmetric framework, such as moduli fields, Affleck-Dine field, FF- and DD-flat directions, and right-handed sneutrino. We estimate how the isocurvature fluctuations generated in each case affect the cosmic microwave background angular power spectrum. With the use of the recent observational result of the WMAP, stringent constraints on the models are derived and, in particular, it is seen that large fraction of the parameter space is excluded if the Affleck-Dine field plays the role of the curvaton field. Natural and well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure

    Nanoscale atomic waveguides with suspended carbon nanotubes

    Full text link
    We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows to overcome the problem of fragmentation of the atom cloud. Adding a second nanowire allows to create a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.Comment: Replaced with the published version, 7 pages, 3 figure

    Low-frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes

    Get PDF
    We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (electrons vs. holes), and channel lengths, we show that the 1/f fluctuation level in semiconducting nanotubes is correlated to the total number of transport carriers present in the system. However, the 1/f noise level per carrier is not larger than that of most bulk conventional semiconductors, e.g. Si. The pronounced noise level observed in nanotube devices simply reflects on the small number of carriers involved in transport. These results not only provide the basis to quantify the noise behavior in a one-dimensional transport system, but also suggest a valuable way to characterize low-dimensional nanostructures based on the 1/f fluctuation phenomenon

    Shot noise of a quantum dot with non-Fermi liquid correlations

    Full text link
    The shot noise of a one-dimensional wire interrupted by two barriers shows interesting features related to the interplay between Coulomb blockade effects, Luttinger correlations and discrete excitations. At small bias the Fano factor reaches the lowest attainable value, 1/2, irrespective of the ratio of the two junction resistances. At larger voltages this asymmetry is power-law renormalized by the interaction strength. We discuss how the measurement of current and these features of the noise allow to extract the Luttinger liquid parameter.Comment: 4 pages, 3 figures,to be published in Phys. Rev. B. For high resolution image of Fig.1 see http://server1.fisica.unige.it/~braggio/doc.ht

    Transverse Electronic Transport through DNA Nucleotides with Functionalized Graphene Electrodes

    Full text link
    Graphene nanogaps and nanopores show potential for the purpose of electrical DNA sequencing, in particular because single-base resolution appears to be readily achievable. Here, we evaluated from first principles the advantages of a nanogap setup with functionalized graphene edges. To this end, we employed density functional theory and the non-equilibrium Green's function method to investigate the transverse conductance properties of the four nucleotides occurring in DNA when located between the opposing functionalized graphene electrodes. In particular, we determined the electrical tunneling current variation as a function of the applied bias and the associated differential conductance at a voltage which appears suitable to distinguish between the four nucleotides. Intriguingly, we observe for one of the nucleotides a negative differential resistance effect.Comment: 19 pages, 7 figure
    • …
    corecore