4,436 research outputs found

    Thermal conductance of two dimensional eccentric constrictions Interim report

    Get PDF
    Thermal conductance analysis on heat flow through two dimensional eccentric constriction

    Palaeoenvironmental signatures revealed from rare earth element (REE) compositions of vertebrate microremains of the Vesiku Bone Bed (Homerian, Wenlock), Saaremaa Island, Estonia

    Get PDF
    The Estonian Journal of Earth Sciences is an open access journal and applies the Creative Commons Attribution 4.0 International License CC BY to all its papers (http://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article

    Accurate and efficient waveforms for compact binaries on eccentric orbits

    Get PDF
    Compact binaries that emit gravitational waves in the sensitivity band of ground-based detectors can have non-negligible eccentricities just prior to merger, depending on the formation scenario. We develop a purely analytic, frequency-domain model for gravitational waves emitted by compact binaries on orbits with small eccentricity, which reduces to the quasi-circular post-Newtonian approximant TaylorF2 at zero eccentricity and to the post-circular approximation of Yunes et al. (2009) at small eccentricity. Our model uses a spectral approximation to the (post-Newtonian) Kepler problem to model the orbital phase as a function of frequency, accounting for eccentricity effects up to O(e8){\cal{O}}(e^8) at each post-Newtonian order. Our approach accurately reproduces an alternative time-domain eccentric waveform model for eccentricities eāˆˆ[0,0.4]e\in [0, 0.4] and binaries with total mass less than 12 solar masses. As an application, we evaluate the signal amplitude that eccentric binaries produce in different networks of existing and forthcoming gravitational waves detectors. Assuming a population of eccentric systems containing black holes and neutron stars that is uniformly distributed in co-moving volume, we estimate that second generation detectors like Advanced LIGO could detect approximately 0.1-10 events per year out to redshift zāˆ¼0.2z\sim 0.2, while an array of Einstein Telescope detectors could detect hundreds of events per year to redshift zāˆ¼2.3z \sim 2.3.Comment: 12 pages, 6 figures, 1 appendix. Submitted to Phys. Rev. D. v2: affiliations updated, one reference corrected. Accepted to Phys. Rev.

    A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau

    Full text link
    In searches for low-mass companions to late-type stars, correlation between radial velocity variations and line bisector slope changes indicates contamination by large starspots. Two young stars demonstrate that this test is not sufficient to rule out starspots as a cause of radial velocity variations. As part of our survey for substellar companions to T Tauri stars, we identified the ~2 Myr old planet host candidates DN Tau and V836 Tau. In both cases, visible light radial velocity modulation appears periodic and is uncorrelated with line bisector span variations, suggesting close companions of several M_Jup in these systems. However, high-resolution, infrared spectroscopy shows that starspots cause the radial velocity variations. We also report unambiguous results for V827 Tau, identified as a spotted star on the basis of both visible light and infrared spectroscopy. Our results suggest that infrared follow up observations are critical for determining the source of radial velocity modulation in young, spotted stars.Comment: Accepted for publication in the Astrophysical Journal Letter

    Leveraging OpenStack and Ceph for a Controlled-Access Data Cloud

    Full text link
    While traditional HPC has and continues to satisfy most workflows, a new generation of researchers has emerged looking for sophisticated, scalable, on-demand, and self-service control of compute infrastructure in a cloud-like environment. Many also seek safe harbors to operate on or store sensitive and/or controlled-access data in a high capacity environment. To cater to these modern users, the Minnesota Supercomputing Institute designed and deployed Stratus, a locally-hosted cloud environment powered by the OpenStack platform, and backed by Ceph storage. The subscription-based service complements existing HPC systems by satisfying the following unmet needs of our users: a) on-demand availability of compute resources, b) long-running jobs (i.e., >30> 30 days), c) container-based computing with Docker, and d) adequate security controls to comply with controlled-access data requirements. This document provides an in-depth look at the design of Stratus with respect to security and compliance with the NIH's controlled-access data policy. Emphasis is placed on lessons learned while integrating OpenStack and Ceph features into a so-called "walled garden", and how those technologies influenced the security design. Many features of Stratus, including tiered secure storage with the introduction of a controlled-access data "cache", fault-tolerant live-migrations, and fully integrated two-factor authentication, depend on recent OpenStack and Ceph features.Comment: 7 pages, 5 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Assessing Differences Between Physician\u27s Realized And Anticipated Gains From Electronic Health Record Adoption

    Get PDF
    Return on investment (ROI) concerns related to Electronic Health Records (EHRs) are a major barrier to the technologyā€™s adoption. Physicians generally rely upon early adopters to vet new technologies prior to putting them into widespread use. Therefore, early adoptersā€™ experiences with EHRs play a major role in determining future adoption patterns. The paperā€™s purposes are: (1) to map the EHR value streams that define the ROI calculation; and (2) to compare Current Usersā€™ and Intended Adoptersā€™ perceived value streams to identify similarities, differences and governing constructs. Primary data was collected by the Texas Medical Association, which surveyed 1,772 physicians on their use and perceptions of practice gains from EHR adoption. Using Bayesian Belief Network Modeling, value streams are constructed for both current EHR users and Intended Adopters. Current Users and Intended Adopters differ significantly in their perceptions of the EHR value stream. Intended Adoptersā€™ value stream displays complex relationships among the potential gains compared to the simpler, linear relationship that Current Users identified. The Current Users identify ā€œReduced Medical Records Costsā€ as the gain that governs the value stream while Intended Adopters believe ā€œReduced Charge Capture Costsā€ define the value streamā€™s starting point. Current Usersā€™ versus Intended Adoptersā€™ assessments of EHR benefits differ significantly and qualitatively from one another
    • ā€¦
    corecore