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Abstract
,-

The present work is concerned about the investigation of impact forces. Sampled

measurements are taken from the transient behavior of a piezoelectric transducer under

impact, and they are processed in order to infer the impact forces that produced these

dynamics. Two independent models are constructed to represent the transducer behavior

under normal and transverse impact forces. These models are built from the sampled

measurements, by means of appropriate mathematical techniques for system identification.

An autoregressive model polynomial contains information regarding natural frequencies and
/-

damping characteristics, and it is constructed by fitting the polynomial to the free response.

A moving-average model polynomial represents the phase and magnitude of the transducer's

free response, and it is developed by curve ~tting spectral information. With these

polynomials conforming what is called an ARMA model, the impact measurements are

filtered so that the original signals are reduced to the "true" impact forces, by means of a

deconvolutional process. The calculated impact forces are useful to infer information about

the events that take place in the interval of projectile-transducer interaction.
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Chapter 1

Introduction

1.1 Historical background

The study of impact phenomena can be traced back to the early efforts of applied

r
mathe~aticians and physicists to represent it analytically. As in many other cases in the

history of applied science, the study of colliding bodies depends heavily upon the

availability of mathematical tools and general physical laws.

In the 18th century, when the field of applied mechanics emerged dramatically from

its previous pre-scientific form, impact phenomena were modeled by algebraic

equations of momentum and kinetic energy. The approach was to consider the bodies as

rigid, point-mass entities. The main problem was to predict the overall impact effect,

including the final velocities, by introducing concepts such as the coefficient of

restitution.

Early m this century, the response of dynamic systems to impulsive forces was

recognized as an important way of characterizing them. Incidentally, a problem of general

interest consists of estimating the dynamic free behavior of a system, after initial

conditions are applied as a result of an impact or impulsive load. Several analytical

techniques were developed, but their application has been limited to simple models and

2



geometries.

In the last 50 years, major technological and mathematical advances have made

possible the experimental and theoretical study of bodies and systems under impulsive

dynamic forces. Experimental techniques include the use of digital equipment for data

collection and processing, the introduction of several different kinds of transducers, and

the extensive use of computers. Mathematical techniques for dealing with very complex

high order systems have been developed, such as the finite element method (FEM), and

the group of numerical techniques intended to model dynamic systems from records of

input-output data, known as System Identification (SI).

1.2 Motivation for the study of impact processes

As in many other cases in engineering and science, the study and understanding of

impact is relevant in our industrial societies because many technological processes

and developments involve this kind of phenomenon. To mention only some applications

of this field of knowledge:

(a) The design and construction of engineering structures intended to withstand stresses

and deformations derived from impulsive forces require the ability to estimate their effects

on the structure. Finite element models have been extensively used to simulate impact

phenomena in spacecraft, aircraft and automotive components and structures [ref. 11] and

many others. Also, lumped parameter models have been proposed to explain the complex

interactions and behavior of deformable bodies in collision [ref.6 and 8]. Some models are

even intended to represent permanent deformation due to plastic behavior and fracture in

the structures [references 3 and 6]. Special attention has been focused on the design

3



of vehicle structures capable of collapsing in a desired fashion so that the integrity of the

occupant's space is guaranteed [ref 32].

(b) The planning and calculation of the amount of energy necessary to perform certain

industrial operations and the effects of these processes on tools and machines have also

been modeled by discretization and numerical procedures [ref. 11].

The importance of understanding impact is not only practical, but also a theoretical

aspect. Interestingly, the field of theoretical physics has borrowed the notion of "particle

impact" in the construction of models for explaining complex processes. One of them,

the so-called "chain reaction II paradigm, is a model of electrons and heavy-atoms

represented as particles of different sizes in motion. Continuous collisions of electrons

and heavy atoms make the latter release new electrons, and the process goes on and on.

Another example is the model proposed for explaining the flow of free electrons when

an electric current is present in a crystalline material. Again, the electrons are represented

as particles in motion under the action of an electric field. Continuous collisions of atoms

and free electrons in the crystalline material make the former vibrate, generating heat.

There are other examples in the field of statistical thermodynamics as well.

1.3 The piezoelectric transducer apparatus

An important device in transducer technology, important in the experimental study of

" impact, is the piezoelectric force transducer. Even though the piezoelectric behavior of

some crystals has been known for more" than a century, it was not until the decade of

1940 when it began to have practical use in instrumentation. Before that time it was not

practical to take advantage of the property of some crystals that exhibit electrical charges

4



under mechanical loads, since it requires very-high-input-impedance amplifiers.

Piezoelectric force u:ansducers are preferred over several other alternatives in force

instrumentation because of their advantages. Most force transducers have an elastic sensing

element whose deformation is a measure of the acting force. For the system to have useful

sensitivity, a rather large compliance is required, and consequently, large deformations

will be present. But these large deformations are not desirable because they introduce

geometric changes into the force path, which in turn cause measurement errors. For a

piezoelectric force transducer the sensing and the transducing elements are the same one,

so while there is .no need to measure a deformation, which is much smaller than with

other measuring systems, there is a need to amplify an electric charge, which is

proportional to the applied force. An additional important consequence of the relatively

high mechanical rigidity of piezoelectric transducers is that they have high natural

frequencies, which make them appropriate for performing measurements of extremely fast

events, such as impact forces and sudden accelerations.

Essentially, a typical piezoelectric multiaxis-force transducer consists of a stack of

quartz discs and the corresponding electrodes assembled into a steel housing. Since the

piezoelectric property is directional, each disc has been machined in a specific crystal axis

orientation, so that a sensitive axis coincides with each of the three orthogonal components

of the force to be measured. For the axial (vertical) component, the force is transmitted

to the corresponding disc by means of compression, whereas for the remaining 2

transverse (horizontal) components, the forces are transmitted by friction and shear. When

a force F acts upon the transducer, it is transmitted to each of the discs with the same

5



magnitude and direction. Then, each disc produces an electric charge proportional to the

force component acting along the corresponding specific axis, and it is in turn amplified

up to an useful level. For this purpose, appropriate high-impedance charge amplifiers and

data sampling systems are used so that the information can be read by a computer and

stored in its memory.

Upper steel plate

GrOund/

Preloading bar

IJ======IJ==
:======__IJ==

Figure 1.1 The piezoelectric transducer structure
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Chapter 2

Impact force measurement with a. '

piezoelectric transducer

2.1 Problem statement

The purpose of this work is to calculate the impact forces of a golf ball against a rigid

barrier, from measurements taken with a piezoelectric transducer. The golf ball is

projected at a high velocity by an air cannon and collides at a certain angle on the

transducer surface, which plays the role of the rigid barrier. The impact forces can be

represented by two orthogonal components, Le. normal and transverse.

During the impact process, the energy transfer from the ball to the transducer is so

intense that it produces vibrations of the transducer structure. As a result the electric

output of the transducer does not correspond to the impact forces, includes dynamic forces

internal to the transducer itself. The problem then consists of estimating the "true"

impact forces, given sampled m~surements of the total transducer dynamic signals..

7
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2.2 Scope of this thesis

As pointed out before, since the transducer behaves as a dynamic system under the

rapid application of impact forces, a logical approach is to build a model for the transducer

consistent with these vibrations. It is important to notice that, since the impact

phenomenon has a finite duration, the transduc.er vibrations are free or unforced in ~he

interval following the impact. The idea is to build a dynamic model consequential

to the measured dynamic behavior and, by means of an appropriate numerical

procedure, to estimate the profiles of the unknown forces that generated the vibrations.

Several different kinds of models have been used for representing structures under impact.

They can be classified in two large groups, namely distributed parameter and lumped

8



parameter models. The transducer will be represented as two independent, discrete time,

lumped parameter models. The two models will represent the phenomena in the

transverse and normal orientations, relative to the transducer surface. These models are

assumed to be independent since the transducer is designed to measure orthogonal forces

independen t1Y.

In Chapter 3 the general structure for the model is established and several

characteristics of the process, such as measurement noise and crosstalk, are introduced in

the model. In Chapter 4, a numerical technique for estimating the order of the system from

measurements of the free response is presented. The procedure is based on the concept

of observability and identifiability and is intended to compensate for the effects of

correlated noise embedded in the data. Chapter 5 is concerned with the first stage of the

model identification procedure. Essentially, a model is fitted to the free response

sequences by means of an iterative version of the least-squares technique. The

identification of this model has to be iterative in order to compensate for the presence of

correlated perturbations in our measurements due to crosstalk between different channels

of the transducer. This first model contains information about natural frequencies and

damping of the system. Then, Chapter 6 presents the second stage of the identification

process: the model is completed taking into account the initial conditions of the system free

response. A non-parametric technique is used in order to curve-fit the free-response

discrete Fourier transform with two polynomials. A set of Markoff parameters is

calculated from these ..PQlYl1omials, _and this information is then used to complete the

model for the transducer. Finally, the overall gain is calibrated using constants

9



provided by the manufacturer, in order to account for amplifier gains, so that the

calculation of the impact forces yields appropriate units, such as Newtons or pounds.

Once the model is available, the calculation of impact forces becomes a standard

deconvolution (or filtering) problem. Chapter 7 contains the numerical results of the

identification and deconvolution processes and presents the conclusions. Finally, Chapter

8 contains observations for future study of this problem.

10



Chapter 3

Setting up the model

3.1 Sampling the impact process measurements

As pointed out before, only the vibration measurements for transverse and normal

phenomena are available, namely xN(t) and xT(t) respectively. The process is being

sampled at intervals of Ts ,and appropriate representations for the measurements are

xN(k) = L 0 (t-kT) xN(kTs ) (3. 1 )
k=O

~

x
T

(k) = L 0 (t-kT) x
T
(kTs ) (3 .2)

k=O

Notice that the summations start at k=O, implying that the impact process begins there.

The character 0 represents the Kronecker-delta, and the overbar indicates the sampled

function. The index k indicates the position of the samples in the sequence. Now, taking'

Laplace transform of equations (3.1) and (3.2), and recalling that the Laplace transform

of the 0 function is:

we obtain from each of expressions (3.1) and (3.2):

(3 .3)

~

= "x (kT ) e -S*k*Ts
L...J N s
k=O

11
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and

( 3 • 5)

and defining a new variable z in terms of the complex frequency s

Z ~
S*k* Te S

it is possible to rewrite equations (3.4) and (3.5) as follows
~

ZT(xN(k) ) = L xN(kT) Z-k
k=O

~

ZT(xT(k) = L xT(kT
s

) Z-k
k=O

(3. 6)

(3.7)

The last two equations are the conventional z-transforms (ZT) of the corresponding

sampled signals at each channel. Notice that they are in the form of infinite Laurent series

and that the coefficients of each power of the variable z are the ordered samples of the

signals. The impact forces, namely uN(t) and uT(t), can also be treated in the same way,

so that their z transforms also take the form of Laurent series

ZT[uN(k)

N

= ~ uN(kT) Z-k
k=O

Nc

= L u
T
(kT) Z-k

k=O

(3.8)

(3.9)

Notice that the z transforms of the impact forces have been truncated at the Ncposition,

since the time of contact projectile-transducer is finite and is supposed to consist of only

Nc +1 samples. In general, the number Nc is not a known quantity.

12



The purpose of this work is to reconstruct the Nc+1 coefficients of the impact forces by

means of appropriate models.
'\

3.2 The ARMA model for the transducer dynamics

By assumption, XN and Xr are the outputs of independent linear systems. A linear

system is characterized uniquely by its impulse response sequence

h (k) = L 0 (t-kT) h (kT
s

)

k=O
(3.10 )

or, in the z transform domain

H( z) = ZT(h (k)

~

= L h (kT) Z-k
k=O

(3.11 )

Under rather general conditions, H(z) can be expressed also as a rational function, Le.,

the quotient of two polynomials of order N in the variable z:

(3.12)
a +a z -1 + +a Z-No 1 N

1 +b 1 Z -1 + +b NZ - N •
-----=-------H(z,) =

and it is also called the transfer function. It represents the ratio of the output z-transform

to the input z-transform:

H(z) =

~

Lx(kT)z-k
k=O

N

tU(kT)z-k
k=O

(3.13 )

Now, we make equations (3.13) and (3.12) equal, since they represent two different

" 13



expressions for the system transfer function. So,-we have

a o+a
1

Z -1 +a
2
z -2 + +aNz -N

1 +b
1

Z -1+b
2
z -2+ +bNz-N

=

~

LX (kT) Z-k

k=O

Nt u(kT) Z-k
k=O

(3.14)

After developing the series and doing some algebraic manipulations we have

Expanding the products of the expressions in eq. (3.15) and equating the coefficients of

like powers of z, it is possible to re-write an equivalent formula in the vector-matrix form.

Notice that this expression is valid only for the case in which the number of values of u

is less than or equal to Nc+1.

h
x (0) x (T ) x(2T) x (NT) N

s s s

X (T ) x (2 T ) x (3T ) x ( (N+1) T )
b N - 1

s s s s
=

x(jT) x((j+1)T) x((j+2)T) ... x ( (j +N) T )
b

l

s s s s
1

u (0) u(T) u (2T) ... u (NT) aNs s

U (T ) u (2 T ) u (3T ) ... u ( (N+1) T )
s s s s

(3.16 )

u(jT) u((j+1)T) ... u ( (j +N) T ) aos s

14



Equation (3.16) represents the input-output relationship of a dynamic system. This

expression is useful for calculating the input sequence u(kTs), k=O,I, ... as long as the

output values x(kTs) and the model parameters (~and b) are available. In the problem

at hand this is not the case. The output x(kTs) is available but under noisy conditions,

as I we shall see, and the model parameters are unknown. Even the system order N is

unknown. The process of estimating the model parameters, essential to the calculation of

the impact force coefficients, defines the nature of the problem; in other words, this is an

identification problem.

A particularly useful recurrence expression can be written from equation (3.16) by

observing the regularity in the indexes at every row. This expression, often called

"autorregressive-moving average" (ARMA), takes the following structure:

We can·isolate the value xk and obtain a prediction equation for it:

x(k)=u(k)a +"'+U(K-N)a -x(k-l)b -···-x(k-N)b (3.18)
o '" N 1 . N

The autorregresive part is defined by the prediction of the new Xk by the contribution

of the preceding values in the sequence, whereas the moving-average portion of the model

consists of the contribution of the weighted average of an exogenous sequence u.

3.3 Noise in the measurements

Noise is an omnipresent phenomenon in real physical processes. The piezoelectric

15



transducer and the corresponding electronic instrumentation present two differentkinds of

noise sources: those of deterministic nature, and those of random type.

a) Random noise: this kind of perturbation is composed of all phenomena that are difficult

to predict. Quantization is probably the most important component, and it is inherent

to the very essence of sampled digital systems. It consists of the error introduced by the

measuring device when each measurement is "rounded" or "truncated" as it is converted

to a binary sequence of ones and zeros.

b) Deterministic noise: this kind of exogenous interference in oui" measurements is due

to the fact that, even though each channel is supposed to be independent, we obtain

residual effects due to the other channels. This phenomenon is commonly called crosstalk

and it can be readily detected in a spectral plot.

To be more specific in the mathematical representation of the noise effect, consider the

following expressions :

(3.19-a)

(3.19-b)

This last representation now includes additive noise in the measurement and also

takes into account the cross-talk noise in the form of additional transfer functions from

one output to the other represented with double subindex. A block-diagram representing

these equations appears in fig.3.1. The inclusion of transfer functions from each output

to the other implies the assumption that crosstalk is only an interference of each

channel output on the other. The position of crosstalk perturbations in the frequency

16



domain is such that we can actually moderate its effect by applying conventional low-

pass digital filters to the information. Such operation will enhance the accuracy of the

identification process by minimizing the presence of noise, particularly of ~rosstalk, so
t "

that the estimation error will decrease, and then it will be possible to assume a single

source of noise in the measurement. The following equations represent the system after

,applying low pass filtering:

(3.20-a)

x* = x + e* =
TNT

(3.20-b)

U1 PHN

----±t>8N

HNT HTN

XN

U'1 +
HT

8 T

XT

Figure 3.1 Block diagram for the compiete transducer model

Comparing expressions (3.18) and (3.19), we see that after the low pass filter process

is applied the cross terms H TN and H NT disappear, and there remains only an additive

17



noise in the output. Later on we shall see that it is convenient to get rid of the crosstalk

before beginning the identification process, since otherwise its deterministic nature would

make our calculations identify crosstalk as part of the true modes of vibration, which

would be certainly incorrect. (see figure 3.2).

UN
XN*

UT

+ +
XT*

Figure 3.2 Two independent models for normal and transverse phenomena.

3.4 Outline of the identification procedure

The ARMA model parameters {Clj, bJ are essential for calculating the input

sequence { uJ , as can be seen in equation (3.16). Since appropriate models for

18



each channel of the piezoelectric transducer are not available a priori, the first task

is to solve the identification problem, that is to say, find a set of appropriate model

parameters so that the corresponding models are self-consistent, in the sense that

they represent the transducer dynamics under impact. Notice that the measurements of

. the transducer vibrations can be separated into two regimes: forced and autonomous. The

first one corresponds to the interval of interaction between the projectile and the

transducer, for which the input force is different from zero, whereas the latter comprises

the subsequent free vibration in the interval· following the projectile-transducer contact

and for which the input force is zero. The measurement samples of the free vibration

interval correspond to the foreshortened impulse response sequence. We say foreshortened

because the first values are embedded in the forced sequence measurements, and thus they

are not readily available.

, The first step in the identification procedure consists of the estimation of the system

order {N} for transverse and normal phenomena. This is done by applying a rank test to

segments of the impulse response sequence (also called "Markoff parameters" in the

literature of time-series analysis), arranged in the form of Hankel matrices. These tests

are developed from the concepts of observability and identifiability of dynamical systems,

and they are applied extensively in order to increase the level of significance in the

matrix singularity so that we account for the presence of correlated noise, which is residual

from crosstalk perturbations. The supporting theory is presented in Chapter 4.

Once the system order is known, an ARx (autorregressive exogenous model) is fit to

the free response sequence. The approach is based on least squares theory, and it will be

19



applied in an iterative fashion in order to progressively remove the bias in the estimation

due to the fact that the noise is correlated. The AR model is a polynomial containing

information about hidden periQdicities in the autonomous sequence. In other words, the

ARx identification will yield estimations for the system I s poles. The algorithm is adapted

from a method known as "generalized least squares" and is presented in Chapter 5.The

next step in the identification process consists of estimating the MA polynomial. It will

be shown that the AR and MA polynomials are related to each other by a Toeplitz-like

matrix and a vector built from the first N+1 Markoff parameters. Since the AR

polynomial is already known from previous computations, there is a need to estimate these

first Markoff parameters, which are not available since they are embedded in the first

N+ 1 measurements of the forced process (the interval of projectile-transducer interaction).

A method borrowed from aerospace-structure modal identification is used in order to

curvefit the discrete Fourier transform (DFT) of the impulse response, and then the

desired Markoff parameters can be easily obtained from the mathematical approximation

of the free response DFT. For some cases, the spectral information in the impulse

response sequence DFT is overlapped by that of the forcing function, so that it is not

possible to curve-fit its DFT information. In this case, a fictitious impulse response will

be introduced starting at an arbitrary location, a MA model will be calculated for this case,

and then the impulse response sequence will be propagated backwards in time so that we

will have the desired initial set of Markoff parameters. The sustaining theory is included

in Chapter 6.

Finally, the complete ARMA model will be calibrated by adjusting the low frequency

20



gain, using constants provided by the manufacturer, so that the input force can be

calculated in standard force units, such as Newtons. Ajustification of this process will be

given also in Chapter 6. With the model available, the calculation of impact forces is done

by a deconvolutional (or filtering) process.

21



Chapter 4

Finding the system order

The purpose of this chapter is to develop a methodology appropriate for

estimating the size of the ARMA model for the transducer under an impact process .This

size is the order of the polynomials in the model. Since a considerable proportion of our

measurements corresponds to the system I s free response, it makes sense to use these

values for such estimation. As we shall see, two important classical concepts, namely

observability and identifiability, are the backbone of our method.

4.1 The concept of observability-for a dynamical system

Consider the general unforced dynamical system, described by these equations:

x(k+l) = 4Jx(k)

h (k) = ex (k)

(4.1-a)

(4.1-b) .

where <I> is the state-transition matrix, and the over bar indicates that the expression is

that of a discrete-time system. Here the sequence x is the set of states, and the sequence

h is called the measurement vector of the impulse-response sequence.

22



Observability is the property of a dynamical system that permits calculation of the states

from the measurements {h} only. We can write the following relationships

x (1 ) =epx (0)

x (2) =ep2X(0 )

h (0) =Cx (0)

h (1) =Cep x ( 0 )
(4 .2)

Equations (4.2) are the successive application of the relations defined in equations(4.1),

so that we can see the effect of the initial condition x(O) on each one of the following

intervals. Now, in the vector-matrix form we have

h (0) C

h (1) Cep

h (2) = Cep2 X (0) = RX (0) (4 .3)

h(n-l) Cepn-l

Since our objective is to determine the initial state x(O) uniquely, then the matrix R, also

called the observability matrix, must be non singular. Observe the structure of the matrix

R:

C

Cep

R = Cep2

Then the condition for observability is that R be full rank, or

rank(R) = n
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If this is true, then the couple {<p,C} is called an observable pair. Notice that n is the

system order.

4.2 The identifiability condition for an unforced system

Now that we know the inherent condition without which it is impossible to calculate

the states from the measurements only, we can also find the required condition for system

parameter determination given the states. In other words, we ask: under what conditions

is it possible to estimate the entire set of system parameters, given the entire set of state

samples. Notice that the system parameters for an unforced system are nothing but the

values of the state transition matrix <p. Also notice that it is assumed in the very statement

of the problem that all the states are available, which turns out to imply observability. In

order to derive a condition for complete parameter identification, we write a sequence

representing the free-dynamics

x (l) =epx (0)

x(2) =<px (1) =<p2x (0 )

x (3) =epx (2) =ep3X(0 ) ( 4 • 8 )

Since by assumption all the states can be observed, it is possible to set up a matrix in the

following fashion, after n sampling periods

l x(l), ... x(n-1) J = lepX(O), epx(l), ... epx(n-1J

( 4 • 9)
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For the parameters in <t> to be uniquely defined, the following condition has to be true

rank(M) = n
where

M = l x(O), x(l), ... x(11-1)J (4.10 )

The matrix M is often called an n-identifiability matrix in the scientific literature ( see

Lee 1969). If rank(M)=n, then we say that the system is n-identifiable.

4.3 Order determination from samples of the impulse response

From sections 4.1 and 4.2 we can see that, if an unforced system is observable and n-

identifiable, meaning that the matrices R and M have full rank, then it is possible to

estimate the system parameters (values of the state transition matrix components) from

the output measurements only, and these parameters will be unique. Now suppose that

we have n measurements of an unforced system's free dynamics:

IT(l,n)

IT (q, q+n -1 )

h (1)

h(2)

h(n)

h(q)

h(q+1)

h (q+n-1)

(4.11-a)

(4.11-b)

Now recall the following relationships
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h(i) =Cx(i)

x(i) =¢i-lX(O)

then, the generalized measurement matrix II(q,q+n) may be written

h (q) c¢qx(D)

II (q, q+n-1)
h (q+1) c¢q1-1x (0)

= =

h (q+n-1) c¢q1-n - 1X (0)

c¢q C

c¢q1-1 c¢

= c¢q1- 2 (0 ) = C¢2 qx (0) = R¢qx (0) (4.12)

c¢q1-n - 1 c¢n-l

Now, we define a matrix comprising free-response information, as follows

I I
ljJ(l,2n-1) A IT(l,n) I II(2,n+1) I

I I

h (1) h (2) h (n)

h (2) h (3)
=

h (n) h(n+1) ... h(2n-1)

I
I IT(n,2n-1) =

I

(4.13)

Matrix tp , defined as in equation (4.13), has a very particular structure. It is a square

matrix fonned with consecutive segments of the impulse response sequence {hi},and these

consecutive segments are the matrices II defined in equation (4.12). It is usually called
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the Hankel matrix, and it is ubiquitous in the study and research of linear sampled

systems.Now consider a factorization performed on the Hankel matrix of equation (4.13)

Ccp (cpxo) c (cp2 xo) C(cp3xo ) I

Ccp (*xo) Ccp (cp2 XO ) Ccp(cp3XO ) I ...
1jJ(1,2n-1)= (4.14)

I
ccpn-l (cpx) Ccpn-l (cp2 xo ) I ...

0

Matrix 'P in equation (4.14) is partitioned in such a way that each column still

represents one segment of the impulse response sequence, as defined by the vector II

in equation (4.12). It can be seen that each column in the matrix 'P c,an be expressed as the

product of the observability matrix R and something else. This is strongly suggested by

the particular disposition of the parenthesis in each term of matrix 'P as it appears in

eq. (4.14). Hence, the following decomposition permits the explicit expression of the

observability matrix R as one factor in the following product:

c
Ccp

'¥(1,2n-1) =

c

= ccpn-2 cp[xo I cpxo I ... I cpl1-1 xo]

Ccpl1-1
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Now it is possible to easily recognize that the right-hand factor in equation (4.15) is the

n-identifiability matrix, so that the complete decomposition for the Hankel matrix is

w(1 , 2n -1) = R¢B (4.16)

The identity in equation (4.16) permits us to find an essential characteristic of the impulse

response sequence. If we assume that a certain dynamical system is observable and n-

identifiable, then matrices R and N are nonsingular. Also, we know that a property of

physical systems is that the state transition matrix <P is nonsingular.Under such circumstance

we conclude that the Hankel matrix 'P, comprising elements of the impulse response

sequence of a system, is nonsingular as well.

In this spirit it is feasible to estimate the system order of an unforced system by

evaluating the ranks of Hankel matrices constructed with segments of the impulse response

sequence. In general, it holds that

rank ( 'P(Q,p+Q-1) ) =n

as long as the following statement is true:

(n-1)
P ~ 2

Alternatively, we can evaluate the determinants of these Hankel matrices for each p=

2, 3, ... and the system order will correspond to that value of p for which this statement

holds

det (w(q,p+q-1)) = 0 (4.17)

This method works for deterministic systems, I.e., those for which the measurements are

noiseless. In practice, these determinants will not vanish identically because of noise
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contained in the data. Hence, some criterion must be introduced in order to increase the

level of significance. Our approach will be to calculate the average value of the

determinants of 'P(q,p+q-l) for each p,-a1ways processing the same set of measurements,

and plot the ratio Jp against Pn, where

J e.
p

laverage value of det (1\J(q'Pk+ q - 1 )) I

laverage value of det(1\J(Q,Pk+1 +Q-1)) I
(4.18)

where Pk = 1,2,3,4, ... , and Pk+1 =Pk +1. From this plot the order n is obtaineda:s1Ite-

integer number Pk for which Jp is a maximum. A complete justification of this procedure is

rather complex and can be found in [26]. Essentially, the determinant of each Hankel matrix

built up with noisy measurements is a nonlinear multivariable function of each element in

a sequence of noise samples which form a nindom variable series. Therefore, the

determinant is a random variable itself. If we assume that the noise to signal ratio is small,

we can see that the average value of the determinants will converge to the deterministic

determinant as long as a sufficiently large amount of information is processed (law of large

numbers). These last statements are not a formal argument, but rather an explanation of why

the method works.
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Chapter 5

Finding periodicities in the

transducer vibrations

5.1 The autoregressive law for the transducer free dynamics

Once the system order has been estimated following the algorithm presented in .

Chapter 4, the next step consists of estimating the parameters in the model. It will

be accomplished in principle by constructing the denominator polynomial that

defin~s the autoregressive nature of the transducer's free dynamics after impact.

Consider equations (3.20) in a generic form

x*(k) =x(k) +e*(k) =H(z)u(k) +e*(k) (5.1)

Recall that the term {EO} represents the additive noise once the signal has been

processed by an appropriate low-pass filter intended to decrease the presence of

crosstalk. Recall the basic ARMA relationship in our model
N

(1 + Lbiz-i)X(k)
i =1

N

= (Eaiz-i)u(k)
~=o

(5.2)

Now, combining these last expressions, it is possible to obtain a new one in terms

of noisy measurements only
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N _

(1 + L biZ-i) (X* (k) - e* (k))
i =1

N

= (L aiz-i)u(k)
i=O

(5.3)

,.1

In order to incorporate free vibration measurements, we set the input to be zero,

and then an ARx model for the transducer is obtained for the interval after impact.

If we define a fictitious noise v*(k) as follows

N

v*(k) ~ (1 + Lbiz-i)e*(k)
i=l

Then, we have

(5. 4 )

N N

x*(k) = e*(k) + Lbie*(k-i) - Lbix*(k-i)
i=l i=l

or, after introducing the definition of v*(k)

(5.5)

x * (k)
N

= v*(k) - Lb.~(k-i)
i=l ~

(5. 6)

If formula (5.6) is expanded, the resulting expressions may be written in vector matrix

form. This following structure will be very useful for identification purposes

x * (k) x* (k-N) x* (k-N+1) ... x * (k-1) b
N v* (k)

x* (k+1) x*(k-N+1) x*(k-N+2) ... x * (k) b N- 1 v*(k+1)

x*(k+2) - x*(k-N+2) x* (k-N+3) x* (k+1) + (5.7)

b
2

x*(k+p) x * (k+p-N) b
1

We can define each element in this last expression in order to have a short hand

version of it
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X'+(A')8+V'

where each term is defined as

x· ~ vector of measurements

A •~ records of past information

8~ vectorof AR parameters

V' ~ vector of innovations

(5.8)

We can think of the innovations sequence as the input to the AR process that originates

the noise e*, often called the residual.

5.2 A preliminary AR estimation by ordinary least squares

Once an appropriate structure for identification, such as equation (5.7), has been .

established, a preliminary parameter estimation is feasible by means of the ordinary least

squares technique. Consider equation (5.8). Notice that if the innovations sequence v*

were zero, then p+ 1 measurements would be sufficient for estimating the vector 8, so that
(

the matrix A* would be square, and its inversion would provide the desired estimation.

Under the effects of noisy measurements, a criterion should be determined so that the

parameter estimates are optimal under such a policy. Let 8opt be the best estimation under

a minimum error-square criterion. In contrast, the "true" parameters will be called 8true •

Then, the difference between the estimate and the actual value is:

68 = 8 - 8 .
true estlmate

(5 • 9)

In an analogous fashion, there is a difference between the output of the model
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with estimated parameters, and the output of the real model

t1X* = X· - X* .
true estImate

also, the output of the model with estimated parameters is given by

X* = (A*)S
estimate estimate

therefore, combining expressions (5.11) and (5.10) we have

t1X * = X * - (A * ) S .
estImate

(5.1

(5.11)

(5.12)

Now, the criterion of minimization, namely minimum square error, is set to be

(5.13)

In this last expression the superscript T is the transpose operator, and E2 is the function

error square. The optimal estimate 80pt will be the parameter vector which minimizes

(5.23). In order to perform this minimization the function error square is written in terms

of 8esll :

(A*)S )T(X* - (A*)S )
estimate estimate

(5.14)

For the value of 8estimate to be optimal, the derivative of E2 with respect to 8 estimate has to

be equal to zero. For that purpose we expand the expression for the error square and then

the corresponding derivative is calculated, following the rules of differentiation for vectors

and matrices:

E 2 = x* TX* - X*TA *S - (A *S ) TX*T + (A *S ) TA *S (5.15)
est est est est

differentiating and equating to zero
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And therefore, under such condition Scst becomes Scpo so that

e =(A*TA*)-lA*TX*
opt

(5.16)

(5.17)

Notice that the expression for'S opt involves the pseudoinverse of the matrix of past

records, A*. This important result has been used in the field of system identification

"

for more than 30 years. It is well known that this estimate is biased ,i. e., the expected

value for the error is different from zero, if the noise is correlated. This is the case in

our particular application, since one source of noise is crosstalk, and there is a need for

improvement of this first estimation, in order to decrease the adverse effect of the

correlated disturbance.

5.3 Improving the AR parameter estimates by iteration

It has been shown by several researchers,e.g., Eyckhoff and Astrom, that if the

noise affecting our measurements is correlated, then the parameter estimates given by

equation (5.17) will be biased in the sense that the expected value of the error will not be

"
zero. In that case it is still possible to improve the estimation by including a model of

the noise process in the identification method. In general, if a noise sequence is

correlated, then it can be expressed as the output of an AR process for which the input.

is a Gaussian, finite variance random variable (see, for example, Hsia or Clarke). To be

more specific, consider the following structure for the noise model
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r

e(k) = ( 1 + L CiZ-
i

) v*(k)
i =1

(5.18)

Here, e(k) is a white, finite variance random variable, and the values v*(k) are called

innovations, because for each value of k, it provides the only "new" external influence

that the sequence E*(k) has. A block-diagram presenting the complete model can be

found in figure (5.1). This structure can be understood from another point of view. In
~

a particular sense we are introducing a "prewhitening" filter, which is intended to convert

the correlated sequence v*(k) into a Gaussian one, e(k). The block between signals e(k)

and v*(k) is conventionally called an innovations filter, and its inverse is a whitening filter,

because, if applied to the sequence v*(k), it would become a white noise sequence.

Returning to equation (5.18), it can be seen that the parameters Cj are not known. Even

the order r is not a known quantity. We can develop the preceding expression in a way

analogous to that of equation (5.7). We have

v* (k) v*(k-r) v*(k-r+1) ... v*(k-1) C e(k)r

v* (k+1) v* (k- r+1) v* (k- r+2) ... v* (k) C e (k+1)r-1

v* (k+2) +v*(k-r+2) ... v*(k+l) = e(k+2) (5.19)

v* (k-r+3) v*(k+2)

c1

or, by defining new matrices we can abbreviate the equation

V* = (B*) (8 ) + ec_ (5.20)

Notice the following relationship, readily obtained from equations (5.19) and (5.4)
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e(k)
r N

= (l +LC.Z- i ) (l+Lbi z- i )e*(k)
i=l ~ ~=1

(5.21)

or, in shorthand notation, by defining again a new matrix, we have

e(k) = Q(z)e(k) (5.22)

The polynomial Q(z), consisting of r+p+ 1 terms, is a prewhitening filter acting upon

the residual sequence €*. By processing our signal with the action of this filter, the

exogenous noise will become white, and then it will be possible to apply the conventional

formula for least-square-error estimation, and thus obtain an unbiased estimate. The

problem now consists of the estimation of parameters Cj • It is evident that the process

of estimating the parameters Cj is entir~ly analogous to that of finding the values bi .

Consider equation (5.4) again. Premultiplying the last expression by the prewhitening

filter, we obtain the following expression

ILwe define the filtered signal in the left hand of equation (5.23) as

r

x**(k) = (1 + Lciz-i)X*(k)
i=l

(5.24)

then, after substituting this new defined signal into equation (5.22), and noticing that

it is equal to e(k), we have
N

(1 + Lbiz-i)X**(k) = e(k)
i =1

(5.25)

This last relationship can be expanded in the customary fashion, and expressed in the

Nector-matrix form
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x.. + A "8 + e (5.26)

It can be seen that the structure of equation (5.26) is entirely analogous to that

of equation (5.8). By means of an appropriate prewhitening process, it has been possible

to convert the system to one driven by a purely white, Gaussian noise. Then, the ordinary

equation for least-squares estimation can be applied. The idea behind this formulation is

really to build models for the noise and the system alternately, based upon appropriate

information, so that the bias in the estimation is gradually removed.

Initial conditions

Fictitious
white random
sequence

AR internal process
in the transducer

Noiseleu internal
transducer dynamics

Innovations

+

Residual additive
measurement
perturbation

Sampled
measurements

Innovations filter

Figure 5.1 Block diagram for the AR prewhitening filter im p1ementation

The algorithm can be structured in the following steps:

AR filter

1 The initial step consists of calculating an initial estimate by means of the least squares

formula. This is the zero-th iteration. Notice that the matrix of past information A*

remains the same for all steps

2 Then, we calculate the innovations sequence by filtering the measurements in this way:
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N

V'=(l + Lbiz-i)?(k)
i =1

3 Next, the matrix B is constructed with the innovations, and a least-squares estimate

is constructed for the noise process

8]. =(B TB)-lBV'
nOlse

4 Now, we filter the measurement signal using the parameters of the noise process as

a prewhitening filter
r

x"(k) = (1 + LciZ-i)?(k)
i=l

5 And then, evaluate 8ept by using again the ordinary least-squares formula with the

appropriate components

And, in order to measure the performance of our estimation, we calculate the error

square, which is supposed to decrease and converge to a minimum as the estimation

process goes on

6.- Repeat steps 2 through 5 until the condition for convergence is met, namely
~

E~ - E~ = 0
]+1 ]
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Chapter 6

Reconstruction of phase and

amplitude for the transducer dynamics

This chapter is concerned about the development of a·methodology appropriate for

estimating the remaining unknown parameters in the ARMA model, i.e., the coefficients

in the numerator, and the overall gain. This methodology is based on a technique

borrowed from the field of aerospace structure identification, and has proven useful for

modeling vibrating structures with hundreds of modes.

6.1 Relationship between AR and MA parameters

In Chapter 5, a procedure for the estimation of the MA parameters from the

transducer's free dynamics was presented. It is relevant now to determine a relationship

between the MA and the AR parameters of the model, so that the values of the latter can

be incorporated into the calculation of the components of the former. Recall from

equation (3.11) that the transfer function for a dynamic system can be written in terms of

a Laurent series for which the coefficients are samples of the impulse response function

H(z) = Lh(k)z-k
k=O

( 6 . 1 )

In general, this last representation is extended to infinity, since a transducer is usually
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a very lightly damped system, so that the free vibrations take a considerable number
I

of samples to die out completely. Equating expression (6.1) to the ARMA structure

""L h (k) Z -k =
k=O

( 6 . 2 )

At this point it is possible to cross-multiply and expand the expression, and after

collecting terms of like powers of z we have

a o + a
1
z-1 + ... + a~: =h(O) + (h(l) + b

1
h(0)) Z-1 +

N

... + (11 (N) +L bih (N-i) ) z -N+... )
i =1

( 6 . 3 )

We can now equate coefficients of the same power of z, and write it in the vector-matrix

form. Only N+1 equations will be retained, since they represent completely the desired

relationship between the AR and the MA parameters

ao 1 0 0 0 0 h (0)

a
1

b I
1 0 0 0 h (1)

az = bz b 1 1 0 0 h (2) ( 6 • 4 )

aN b 4 b
3 bz b

1
0 h (N)

Then, it can be seen that the relationship between the AR and the MA parameters

involves a Toeplitz-like matrix constructed with the {bi} values and a vector of the first

\

N+1 values on the impulse response sequence. The components of the AR model are

already known, as well as the system order N; thus, if an estirriate of the first required
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Markoff parameters is available, then the calculation of the MA structure is straight-

forward. For the transducer under impact, we have that even though a considerable

proportion of the measured data consists of free-response values, the required first N+1

samples are not available since they are embedded in the forced projectile-transducer

interval of contact. In the next section a strategy for dealing with this problem will be

discussed.

6.2 Estimation of the required first Markoff parameters

As pointed out before, the problem now consists of estimating the first required

Markoff parameters. In essence, a rational structure for the transfer function will be

assumed, but its dimension may be larger than the order of the system, in order to

counteract the effect of noise and residual crosstalk. It means that p will be larger than

N in the following rational structure

H( z)

where

R (z)
=

Q(z)
( 6 • 5)

Q(z) = l+%Z-l+... +Q
p
z-P

The idea of this procedure is quite simple: an ARMA model of a dimension larger than

necessary will be fitted to the Discrete Fourier Transform (DFT) of the system I s free

response. The over specification, as we have just said, is intended to compensate for

residual crosstalk and other perturbations. We are really taking advantage of the
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availability of techniques such as the fast Fourier transform algorithm and low pass

filtering to obtain the system's free response DFT. Then, for each value of z , we will

assume that the complex gain H(z) is available. Later we shall discuss this assumption.

Consider the following alternative expression of equation (6.6)

( 6 • 6)

Then, this last equation is valid for each z up to the Nyquist frequency

2*n*j
NZ = e data

k '
k = 0,00 N

data
-1 ( 6 . 7 )

For each ~ , H(zJ is a complex gain available from the DFT. At this point it is

important to make an observation. If we take the DFT of our measurement, it is possible

to have some intervals in the z domain representing information about the system

impulse response, whereas some others represent crosstalk or the impact force itself.

It is possible to apply equation (6.6) to relevant frequencies by means of an appropriate

windowing process. If so, then we can stack up the equations, which happen to be linear,

complex-valued in terms of the values of {rJ and {qJ . We have for the most general

case

F~ = G

where we have implicitly made use of the following matrices
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z/H(z) Z ~2H (z) z7H (z) 1, -1 -p
Z. ... Z .

1 1 1

Zi-;l H (Zi+1) Z i-:1 H ( Z i +1 ) Z i-;l H ( Z i +1 ) 1 -1 -p... Z i+1 ... Z i+1

F~ Zi-;2H ( Zi+2) Z i-:2H ( Z i +2) Zi-;2 H (Zi+2) 1 -1 -p... Z i+2 ... Z i+2

Z;:jH( Zi+) Z ~2.H (Z. .) Z .-p.H (Z. .) 1 -1 -p... Z .. ... Z ..
1+J 1+J 1+J 1+J 1 +J 1+J

The matrix F is of size G)*(2p+ 1). A least-squares solution for the parameter vector can

be obtained if the pseudoinverse for matrix F is found. But under such a calculation it is

likely to obtain a complex solution. In order to avoid this difficulty, we take real and

'"imaginary portions of equation (6.8) and construct an auxiliary linear system with real

coefficients, so that our solution will certainly be real. Specifically

~ = ( [~e (F) ] T [~e (F)] )-1 [~e (F) ] T [~e ( G) ]
~m(F) ~m(F) ~m(F) ~m(G)

( 6 • 9)

By restructuring the solution and equating real and imaginary we force the solution of

the least-squares optimization to be real. Again, the best fit for the model is given by a

product of matrices involving the pseudoinverse of a nonsquare matrix. It is important to

point out that, in some sense, the denominator polynomial Q(z) contains information

previously obtained in the ARx identification process. In fact, the roots of the ARx model

should be included in the set of roots of the polynomial Q.

Now, the last step is to estimate the first N+ 1 Markoff parameters from the

polynomials just obtained. by making use of the convolutional relationship
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(6.10)

The solution of this expression is recursive. We are interested only in the first N+1

values, and , since p>N, webave

h(O) =ro

h(l) =r1-h(0)%

h(2) = r
2
-h(1)Ql-h(0)%

and, in general, for any k <P

k

h (k) = r
k

- :E qih (k-i)
i=l

(6.11)

The Markoff parameters obtained from equation (6.11) can be inserted into equation

(6.4) in order to estimate the components of the MA polynomial. We have assumed that

the DFT of the impulse response sequence is available from the fast Fourier transform

of the measured signal. It may be that the desired DFT of the system free response is not

available due to overlapping effects with other signals. In this case, we can proceed in

this way: we can define a fictitious impulse response by shifting the origin to an

arbitrary position, neglecting all the information in the past. We c~culate the DFT of this

fictitious impulse response sequence and proceed estimating a complete ARMA model

for it. Then, using this model and the initial conditions in the fictitious impulse response

signal, we propagate it backwards in time, so that in some sense we are extrapolating the

values of the "true" first Markoff parameters, located at the "true" origin, from a remote
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arbitrary position in the future.

6.3 Overall model gain adjustment and deconvolution

The last step in the model identification is the adjustment of the overall gain, in order for

the model to yield a force calculation in terms of appropriate units, like Newtons or

pounds. There are two gains to be calculated. The first one, called Ku, is intended to make

our ARMA model have a low frequency gain of 1. The reason for this is simple. Suppose

that we want to measure a "quasi static" force with the transducer. In this case, assuming

that the force was applied gradually, the transducer is expected to perform as

a dynamometer; that is to say, no vibrations should appear. Therefore, since we don It

want distortion in the magnitude of the measurement, the ARMA model should have a

unit gain in the low-frequency range. Specifically:

for

then, we have

for

The second gain, which we will label Kr, serves the purpose of dimensionalizing the

model. It means that this constant will take care of the fact that the force calculation

should yield a value in appropriate units such as Newtons or pounds. The manufacturer

provides a table of constants that includes the effects of diverse amplifiers and filters as

well as other devices, so that the calculations can be carried out in force units.
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Now that the transducer model is finally complete, the problem of estimating the impact

force becomes a standard filtering process. The vibration measurements will be processed

by the algebraic inversion of the ARMA model. Specifically:
'.

= (1 + t,bjZ-j)(~~(k}Zkl

K~{t, amz -m1
(6 .12)

6.4 Synopsis of the identification and deconvolution processes

At this point, it is appropriate to recapitulate the techniques presented and to integrate

them in a single body of ordered steps. Figure 6.1 presents a synoptic table of the

identification and deconvolution processes, with reference to the relevant texts.

System order estimation -t>
Autoregressive process
estimation by least-squares

Chapter 3 Chapter 5

'\7

Deconvolution /L
Moving-average process
estimation by DFT curvefittingChapter 6 "'J Chapter 6

Figure 6.1 Synopsis of the identification and deconvolution methodology
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Chapter 7

Numerical Results and Discussion

This chapter presents numerical results for the model identification processes and

the calculation of impact forces. A discussion of these results is included. The results will

give some insights concerning the events that happen in the impact process.

7.1 Model identification for normal and transverse phenomena

Several experiments were conducted for different impact conditions. The projectile

nominal incoming velocities were of 42.67, 36.57, and 30.48 m/s. The angles of incidence

with respect to the normal axis were of 15, 25 35 and 45 degrees. The data sampling

period is Ts = 3 microseconds.

Figures 7.1 and 7.2 present plots of typical normal and transverse transducer transient

measurements respectively. They correspond to an impact process with an incoming

projectile velocity of 30.48 mlsec, at an angle of 15 degrees, relative to the normal axis.

This set of measurements will be processed in order to identify the models for the

transducer. It should be noticed that these measurements are not e?Cpressed in any

particular units.
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A System order estimation for normal and transverse phenomena

The results of the order estimation for both normal and transverse models are presented

in figure 7.3. Recall that the algorithm described in Chapter 4 requires the calculation of

average determinants for generalized Hankel matrices of different sizes. With these

averages, the value of Jp is calculated and plotted in figure 7.3. For both normal and

transverse vibrations, the maximum value of Jp occurs at p=4, and thus, the estimate for

the order of both models is four.

+

+ «Jp max

2 3 456 7 8
(a) NORMAL system order estimation.

8
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+

p

+

+

+

+
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+ «Jp max

2 3 4 5 6 7
(b) TRANSVERSE system order estimation.

+
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Figure 7.3 System order estimation (normal and transverse)
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B System identification for the normal model

The estimation for the normal model order is four, and thus the number of modes that

will be modeled is two. These modes correspond to the pair of peaks between the positions

100 and 200 in the signal spectrum of figure 7.4(a). This figure presents the spectra for

the signal before and after applying enhancing filters. For the original signal in 7.4(a), we

can see that the peak at position 50 corresponds to crosstalk from the transverse channel.

Also, there is a high frequency peak at the position 360 that represents an additional low

amplitude mode that will not be modeled. In (b) we can see the signal spectrum after

isolating the impulse response sequence. This is the information that will be used for ARx

identification.

4
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10.-------r-----.-----,-----,.--------,
dimensionless

frequency vs. magnitude

500

z

100 200 300 400
(a) Spectrum for the NORMAL vibration4

x10
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dimensionless

2

frequency VS. magnitude

/'JJ\ J. ZOI-....-~-_===.L..-llL----I.c~~__...I- -'--__---.J

o 100 200 300 400 500
(b) Spectrum for the NORMAL impulse response

Figure 7.4 Fourier spectra before and after filtering (normal)
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Autoregressive process identification

The initial estimation by ordinary least squares, and the subsequent improvements in

the estimation are plotted in figure 7.5 .. The values of each coefficient {b1,b2,b3,b4}

converge from the initial ordinary least squares estimate (zeroth iteration) in five iterations.

-3.935

Iteratlona->

-3.94
0 2 3 4 5

(a) Coefficient b1

5.88

5.87

iterationa->

5.86

lIE
lIE lIE lIE ,

5.85
0 2 3 4 5

(b) Coefficient b2

liE

-3.91

-3.92 Iteratlons-->
l<

0 2 3 4 5
(c) Coefficient b3

0.992

0.99
Iteratlons->

0.966

"'"
"'"

lIE lIE
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(d) Coefficient b4

Figure 7.5 Evolution of AR coefficients (normal)
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The criterion for convergence is the difference between the kth coefficient and its previous

value. The following table presents these diff~rences

b k _ b k·1
) ) ,

k= 1 6.3820000e-03
k=2 8.4560000e-04
k = 3 1.1630000e-04
k=4 1.5700000e-05
k=5 2.3000000e-06

b k_b k·)
2 2

-1.6678700e-02
-2.3345000e-03
-3.2290000e-04
-4. 3700000e-05
-6.5000000e-06

b k -b k·)
3 3

1.4443200e-02
2. 1612000e-03
3.0070000e-04
4.0600000e-05
6.2000000e-06

b k -b k·)
4 4

-4.0858200e-03
-6.6724000e-04
-9.3510000e-05
-1.2660000e-05
-1.9500000e-06

The algorithm was stopped at the fifth iteration, for which the level of error was less than

1.00e-05 . The final AR normal model is

4

l+Lb
i
z- i =l - 3.9322z-1 +5.8522z- 2 -3.9060z- 3 +0.9867z- 4

i=l

with roots inside the unit circle that ensure system stability.

Moving average process identification

The next step is to fit polynomials R(z) and Q(z) to the discrete Fourier transform of the

impulse response sequence. Notice that the spectrum for it was isolated successfully

by means of conventional digital filters (see figure 7.4 (a) and (b)).

The matrix F and vector G in equation (6.8) were built with information from the FFT

presented in figure 7.4(b) , and the resulting ~olynomials R(z) and Q(z) are

R -83.3475+234. 9082z -1-222. 6486z -2+70. 8864z -3-0. 0045z- 4

Q 1 - 3.9265z-1 + 5.8309z- 2 - 3.8806z- 3 + 0.9768z- 4

As we know, this last expression is intended to approximate the impulse response

function DFT.
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Now, the coefficients of Rand Qare used to generate the first five Markoff parameters,

by applying formula (6.11). The resulting values are thus inserted in equation (6.4), so

that the desired MA parameters are now readily available

a
O 1 0 0 0 0 -83.3475

a1 -3.9322 1 0 0 0 -92.3523

a 2 = 5.8522 -3.9322 1 0 0 -99.2733

a3 -3.9060 5.8522 -3.9322 1 0 -103.8464

a 4
0.9867 -3.9060 5.8522 -3.9322 1 -105.8699

The calculation of parameters ~ is straightforward and leads to the polynomial:

4L a i z -i= -8 3.347 5z -1-223.892 6z -2 + 71. 604 6z -3-0 . 0072 Z -4

i=O

This polynomial has roots inside the unit circle, and thus we know that the system is

minimum-phase, so that its algebraic inversion will present no problem.

Nonnal model gain adjustment

Now, the ARMA model is adjusted so that our calculations are in useful units. First we

calculate the low-frequency gain for our ARMA model: it is 348.71 at z= 1 (s=O) . Then

we divide the MA polynomial by this constant, and our ARMA model will produce net

results, in the sense that there will be no amplification. Our final normal ARMA model

becomes:

-0.239+0.675z-1-O.642z-2+O.2053z-3
-----=--------------------

4 1-3.9322z-1+5.8522z-2-3.9060z-3+O.9867z-4
l+Lb

i
z- i

i =1
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C System identification for the transverse model

The estimation for the transverse model order is four, but it is inconsistent with the

number of peaks that we actually find in a signal spectrum (see figure 7.6), The decision

was made to assign a model order of two, in order to account for the only peak in the

discrete Fourier transform.

5
x10

5r-----'---..-------.------..-------.-----~

dimensionless
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2

1

frequency vs. gain

o I.-A...( ~
o 100 200 300

z

400 500

Figure 7.6 Fourier spectrum for the transverse vibration measurements

Autorregressive process identification

The corresponding initial estimation and subsequent improvements are plotted in figure

7.7.The values of each coefficient converge in three iterations. The criterion for conver-

gence is the difference between the ith coefficient and the previous one ,as it was in the
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normal ARx identification. These differences are presented in the following table:

b I k - b
l

k-l

k= I -9.0200000e-05
k=2 -1.5000000e-06
k=3 -O.2762000e-08

1.1 I77000e-04
1.5100000e-06
O.3276000e-08

Here, the algorithm was stopped at the third iteration. The level of error is on the order

of Ie-08. The final AR transverse model is

2

1 + Lbi*z-i = 1 - 1.9961z-1 + 0.9987z-2

i=l

This polynomial has its roots inside the unit circle, which indicates stability, a condition

for the system to have a bounded impulse response sequence.

Figure 7.7 Evolution of AR coefficients (transverse)
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.Moving average proc~ss identification

In order to estimate the parameters in the MA model for transverse vibrations, we have

to define a fictitious impulse response. This is so because in the spectrum for the original

signal it was not possible to isolate the information corresponding to the impulse-response

sequence, since it is overlapped with other information. The approach now is to define

a fictitious impulse-response sequence, by shifting the origin to an arbitrary location,

and to use its DFT to find a complete ARMA model. Then, we can propagate the impulse

response backwards in time and thus obtain estimates for the "true" first impulse response

parameters, so that we can then obtain the IItrue" MA polynomial. Figure 7.8 represents

the definition of this fictitious impulse response sequence at a maximum of our original

signal, so that the origin is shifted by 256 sampling periods. The vertical axis represents

dimensionless samples.
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Figure 7.8 Definition of an auxiliary fictitious-impulse response sequence
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After curve fitting the DFT of this fictitious sequence, we obtain the following

polynomials R(z) and Q(z)

R (z)

Q(z)

-83.3475+234.9082z-1 -222.6486z-2+70.8864z-3

=----------------------
1-3.9265+5.8309z-1 -3.8806z-2+O.9768z-3

With these polynomials we estimate the first required Markoffparameters of the fictitious

system, and then calculate the corresponding MA polynomial

a
O 1 0 0 341.6761

a
1 =-1.9961 1 0 -329.1879

a· 0.9987 -1.9961 1 -0.0074
2

From this last formula the fictitious MA polynomial is

2

La.z- i = 341.6761 - 329.1879z-1
- 0.0074z-2

i=O ~

GJ
)

Then, we propagate this signal backwards in time, so that an extrapolation ofthe real

first Markoff parameters is obtained. With the required "true" Markoffparameters

available, we can estimate the MA polynomial for the real model
2

L aiz-i = 272.2652 - 251.2036z-1 + 0.0000Z-2
i=O

Again, since this polynomial has roots inside the unit circle, we thus know that the

transverse model system is minimum-phase, and that its algebraic inversion is feasible.
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Figure 7.9 Backwards-in-time propagation for the fictitious impulse-response

Model gain adjustment

The transverse ARMA model is also calibrated so that the deconvolution process yields

results in useful units. The low-frequency gain ofthe ARMA transverse model is

k=7921.70 at z=l (s=O). Thus, the final ARMA model that produces no gain distortion

in the signal is

7.2 Results after filtering the vibrations: impact forces in the transducer

With the complete ARMA models available, the calculation of impact forces becomes

an ordinary filtering problem, for which the solution is given by the deconvolutional
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relationship given by equation (6.12). The result of such process is presented in what

follows.

A Normal impact forces

The experimental data comprised incoming velocities of42.67mJs, 36.57mJs and

30.48mJs, and incidence angles of 15, 25, 35 and 45 degrees with respect to the normal

axis. Figure 7.10 presents three different normal force profiles, for a nominal incoming

angle of 15 degrees, for the three different values of initial velocity. Information

pertaining to normal impact for a nominal angle of25 degrees is presented in figure 7.11.

In every case, the time of golfball-transducer interaction seems to depend on the incoming

velocity. It seems that its value is lower for larger magnitudes of the initial velocity. So,

for a more "severe" collision the time of impact is likely to be shorter than for the opposite
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Figure 7.11 Normal impact forces for a=25 degrees

The collision severity depends essentially on the amount of initial'ball momentum in the

normal direction. Thus, for smaller angles of incidence and larger nominal velocities the

normal impact is more intense, and then the impact forces are larger, as can be seen in

.'
the plots.

There is more information plotted in figures 7.12 and 7.13, corresponding to angles of

35 and 45 degrees. For any impact experiment, the position of the peak force depends

on the collision severity. In general, for a larger amount of initial momentum, _the peak

force appears slightly to the left, so that the evolution ofthe phenomenon seems to be

faster for a more intense impact. Indeed, larger impact forces imply larger deformation

rates in the transducer and in the ball, so that the peak force and the loss of contact will

appear to the left for more severe collisions.
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An important observation regarding the characteristic profiles of the normal forces

obtained is that there is no change of sign in their interval ofvalidity, as one would

intuitively expect. It means that the ball-transducer interaction is only of compressive

nature, and this observation gives place to some insights concerning the sequence

of events that must take place in the ball. During the interval oftime prior to the force

peak, the ball experiments increasing deformation, and thus a certain amount of energy is

stored in the form of elastic strain. The point of maximum deformation must coincide

with the force peak, and during the interval following the maximum, all the energy

stored in the form of strain is released again, some to be transferred to the trans-

ducer, some to be restored to the kinetic energy of the ball,or converted into heat. These

last observations are consistent with the classical conjectures on impact stated by Isaac

Newton, in the sense that our measured normal forces indeed present two well-defined

intervals ofb~havior during impact, namely, elastic deformation and restitution, separated

by a maximum value in the force profile. In order to test the validity and consistency of .

the normal impact forces we have just calculated, an index of accuracy must be used.

.This index consists of the correlation between the calculated change in momentum and

the measured change in momentum. The calculated change in momentum is the integral

of the normal impact force with respect to time:

t= t
LC

b.H = f F dt, cal cula ted N

t=o

The measured change in momentum is obtained from measurements of ~he actual incoming
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and outgoing velocities, and the actual angles of incidence and rebound

Figure 4.14 presents these results for 27 different experiments. The error never exceeded

4.5%, which says that our calculations are reasonably accurate.
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B Transverse impact forces

Figure 7,15 contains typical results for low intensity transverse impact. We can

observe in this plot that there is a sign reversal in the force profile, in opposition to the

normal case where the force does not cross the horizontal axis during the impact process,

Another important observation is that the peak force appears sooner for a smaller amount

of initial transverse momentum, so that the force maximum for an angle of 15 degrees

appears to the left with respect to the case of 25 degrees. Similar profiles appear in figure

7.16, where the incoming velocity is of 36.57 m/s. Notice that, as the intensity of the

impact increases, the negative portion of the force profile becomes smaller.
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Figure 7.16 Transverse impact forces for Vin=36.57 m/s

More experimental information is depicted in figure 7.17, now for an incoming

velocity of36.57m/s, and larger angles of incidence. The initial transverse momentum is

larger than those of figures 7.15 and 7.16. We notice that the negative portion ofthe

curves has decreased significantly, so that most of the transverse force is positive. In fact,

as the transverse impact becomes more and more intense, the negative portion ofthe
force

profiles tends to disappear. Incidentally, for the cases plotted in figure 7.18, the impact

forces are essentially positive.
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A test of validity analogous to that ofnqrmal impact forces was applied to the transverse

impact data. The calculation of change in transverse momentum is nothing but the time

integral of the corresponding impact force, whereas the measured change in momentum

is estimated from measurements of incoming and outgoing velocities, angles, and final spin

rate. Figure 7.19 contains such comparison for the eight experiments that have been

previously presented. The error never exceeded 6%.
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Figure 7.19 Calculated vs. measured change in transverse momentum [kg*m/s]

Some remarks are relevant at this point concerning the consistency and validity ofthe

transducer models. It is evident that there is no consistency between the normal and

transverse forces, since the former last for periods of about 460 microseconds, whereas
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the latter seem to last for about 600 or 700 microseconds. This happens because the

transverse model does not represent the transducer behavior appropriately. Essentially,

an ARMA model proved to be inadequate modeling transverse impact vibrations. A

nonlinear model should be used in order to account for the sluggish behavior in the

transverse channel, including the potential effect that Coulomb friction may have on it, as

a result of relative displacement between quartz discs and the steel plate surface. This

sluggish behavior of the transducer and the consequent delay ip the transverse force

profile have been reported by several researchers ( e.g., Gobush [22]). A possible

solution to this problem may be a redesign ofthe transducer structure intended to

increase its natural frequency by subtracting mass from the upper steel plate, so that its

responsiveness to the high-rate evolution oftransverse impact forces is adequate. Another

solution consists of modeling the transverse vibrations with a nonlinear model, including

the effects of hysteresis and lag resulting from the relative displacements that have been

mentioned before. The redesign ofthe transducer structure would be preferred to the

analytical approach, since the selection of a nonlinear model and its identification are not

easy tasks. It is important to notIce that, despite the apparent lag in the transverse forces,

the change in momentum calculated on the basis of those profiles is consistent with the

measured change in momentum, as shown in figure 7.19. It means that, even though the

transverse profiles are not valid, we can stilI evaluate the change in momentum by integra­

ting them with respect to time.

The ARMA model for normal impact, on the oth~r hand, performed the deconvolution

appropriately and resulted in normal force profiles that make physical sense: they are
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strictly positive, implying the compressive nature of the normal impact process, and they

present two well-defined stages in the impact process, namely, initial compression and

restitution.
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Chapter 8

Conclusions and future research

8.1 Summary of conclusions

This chapter presents .some guidelines intended to improve the numerical results and

enhance the data processing. It is relevant to summarize the results and conclusions presented

in Chapter 7. Two independent ARMA models were constructed for normal and transverse

phenomena in the transducer. Then, these models were used for estimating the true impact

force profiles by means of a deconvolutional process. The identification of the models

inryved parameter estimation by means of least-squares schemes in time and in the.
frequency domain.

The resulting normal impact force profiles were reasonably good. It was found that the

time of interaction between the projectile and the transducer decreases as the impact intensity

increases. Also, the max~j1urn value in the normal force profile seems to appear earlier for

larger impact intensities. So, in general it can be stated that the sequence of events becomes

faster for larger values of momentum involved in the process. The correlation between the

calculated and the measured change in normal momentum was very high, indicating that the

normal impact forces are valid. The normal model represented the transducer dynamics

reasonably well.

On the other hand, the transverse model did not represent the transducer dynamics
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appropriately. A common feature of the transverse impact forces calculated with the ARMA

model is lag or delay in its evolution, since the time of loss of contact for transverse forces

is larger than for normal forces. The reason for this apparent sluggish behavior in the

transverse channel seems to be related with the transducer configuration. The transducer's

original design was altered, incorporating an additional steel plate attached to the upper

surface intended to protect it from the intense impact forces. This plate is essentially an

additional mass that makes the natural frequencies of the apparatus decrease significantly,

and as a consequence, its responsiveness to high-velocity phenomena is compromised.

The transducer behavior in normal impact was not significantly affected, probably due to

the compressive nature of the normal force, which is entirely transmitted to the

corresponding quartz disc, leaving no delay or lag of any kind. On the other hand, the

transverse behavior may have been drastically changed. Recall that the transverse force is

transmitted from the upper steel plate to the corresponding quartz disc by means of shear and

friction between surfaces in contact. It is conjectured that under impulsive transverse forces,

a relative displacement between the upper steel plate and the upper quartz disc may appear

in some intervals of the impact process. It would in turn· produce nonlinear behavior that

cannot be represented by the proposed model for the transverse channel.

8.2 Future research

It has been pointed out in the summary of conclusions that the transverse model did not

represent the dynamical behavior of the transducer appropriately, and that this was due to
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nonlinearities arising from the presence of friction and relative displacements between plates

when impulsive transverse forces are applied to the structure. The most important nonlinear

effect of friction in the transverse model is hysteresis. It is possible to deal with the problem

by establishing a nonlinear model for the transverse channel and incorporating hysteresis

into it. But even though there are several techniques for nonlinear system identification, a

common required condition is that the nonlinearity be differentiable in the interval of

validity. The model for hysteresis has a discontinuity at the position x'=O in the derivative

of the relationship F= F( x'), and this is why an analytical approach to the transverse

nonlinear modeling problem has a serious drawback.

A pragmatic approach to the problem, proposed by Gobush [22], consists of redesigning

the transducer, so that the additional plate intended to protect it has the minimum possible

amount of mass, and its addition to the apparatus does not decrease the system natural

frequencies significantly. Also, the redesign may consist of a modification in the assembly

such that the transmission of the transverse force is not by friction, but by shear only.

If the transducer redesign succeeds in eliminating nonlinear phenomena in the transverse
"'"I

model, then an overall ARMA model can be constructed to represent the transducer with a

single, multi variable structure, comprising the coupled effect that each channel has on the

other (crosstalk). Recall that in the present work, the crosstalk was eliminated by means of

enhancing low-pass filters, and it made possible the construction of independent univariable

models for normal and transverse dynamics respectively. The following equation represents

this idea
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(8.1 )

Here, the ARMA model is multi variable, and the terms off the diagonal in the square

matrix represent crosstalk effects between channels. Thus crosstalk becomes part of the

model instead of being an internal perturbation in the signals. A practical problem arises in

a multi variable, frequency-domain approach, namely, how to calculate the spectra of the

cross-transfer functions HNT and HTN, from the information available.

Another improvement in the identification techniques is the following one. Suppose that

the AR model has been calculated. Recall equation (6.5)

H(z) = R(z)
Q(z)

(6.5)

If the order of the polynomials R(z) and Q(z) is set to be equal to the system order, then

the polynomial Q(z) can be replaced by the AR polynomial, for which the coefficients are

already known. This substitution decreases the number of parameters to be estimated in the

discrete Fourier transform.curve:::fitting. Specifically, only the polynomial R(z) will remain

unknown. Moreover, the polynomial R(z) will be an estimation of the MA polynomial. The

problem is that, by decreasing the order of R(z) we no longer account for noise or any

perturbation, and thus the estimation will be rather poor. An iterative scheme should be

investigated to improve the estimation in this case.
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Appendix A

Experimental methods

This section is intended to describe the experimental procedures used to take

measurements of the impact process variables. Figure A.I contains all the variables that

are used to characterize the golf-ball dynamics before and after the impact.

Vo= golf-ball incoming velocity.

VI = golf-ball rebound velocity.

ao = initial angle of approach.

a 1= final angle.

wo=initial spin rate. (In general it is assumed to be zero).

WI = final spin rate.

Spbll rde 0),

~

Vo
AngTIe 0:.0 I Angle lX,

v /,

I I
c::=::=J r 1c==J

B! l.'=1[=="--:~~~~~_

Figure A.I Definition of variables
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Figure A.2 presents the measurement of velocity. Two parallel sheets of light, separated

by a distance D, are placed in a region of space containing the golf-ball trajectory. As the

ball crosses the first sheet of light, it triggers the measurement of time elapsed to cross the

region between the sheets of light, which will be labeled to' Since the angle of the velocity

vector a allibthe distance D are known, an estimation of the velocity V is readily obtained

from the expression

v = D

t cos (ex)
c

2 sheets of light

i
D

1

Angle ex

Figure A.2 Measurement of velocity

79



Figure AJ describes the measurement of trajectory angles. The initial angle a o is

known since it corresponds to the orientation of the air cannon. The final angle a 1 is

measured in this way: after the ball has collided with the transducer, it in turn hits a sheet

of paper, and the point where the hole is located is used to estimate the corresponding

angle.

Sheet of paper
,

1
1

0
~

t
t

\

In'~i=====ii l I:==~
I I. t

Figure A.3 Measurement of trajectory angles
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Figure A.3 illustrates the measurement of spin rate. The initial spin rate COo is supposed

to be zero. The final spin rate co 1 is estimated by means of a stroboscopic process.

Essentially, a set of black dots are marked on the ball surface. Once the ball has collided

with the transducer, a photographic camera is activated twice, and the time elapsed

between the shots is khown. When the pictures are processed, careful measurements are

taken and fed into a computer program that estimates the spin rate from this information.

Dark dot in the ball surface

)
Stroboscopic camera

Figure A.4 Measurement of spinrate
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