153 research outputs found

    The development of juvenile-typical patterns of play fighting in juvenile rats does not depend on peer-peer play experience in the peri-weaning period

    Get PDF
    Open access article. Creative Commons Attribution 4.0 International License (CC BY 4.0) appliesPlay fighting in rats involves attack and defense of the nape. To protect the nape, rats use a variety of defensive tactics, with different strains having specific preferences. Targeting of the nape is established before weaning and defense matures over the course of the week preceding and the week proceeding weaning. Thus, it is possible that experience from engaging in immature forms of play is needed to consolidate the nape as the playful target and for the development of the juvenile-typical pattern of defense. Two experiments were conducted to evaluate this possibility. For the first experiment, male rats were reared over the week post-weaning in either pairs or alone, and their play tested with unfamiliar partners when juveniles (31-34 days). For the second experiment, during the week preceding weaning, male and female rats were placed into one of three conditions: (1) with the mother and no peers, (2) with same-sex siblings but no mother, or (3) with both the mother and same-sex siblings. The subjects were tested in same-sex, samecondition pairs when juveniles (31-34 days). Rats from all conditions, in both experiments, attacked the nape during play fighting and developed the same juvenile-typical patterns of playful defense. This suggests that the experience of peer-peer play in the peri-weaning period is not necessary for the development of the attack and defense components of juvenile-typical play.Ye

    Pinning in the play fighting of rats: a comparative perspective with methodological recommendations

    Get PDF
    Open access article. Creative Commons Attribution 4.0 International LIcense (CC BY 4.0) appliesDuring play fighting, rats attack and defend the nape of the neck and during the course of this competitive interaction, they may adopt a configuration in which one animal stands over its supine partner (i.e., pin). Because the pin configuration is typically frequent and relatively easy to identify, it has been widely used as a marker to detect the effects of experimental treatments. In the present study, the frequency of pinning during standardized, 10-min trials in three strains of rats, Long Evans hooded (LE), Sprague-Dawley (SD) and wild (WWCPS), was compared. LE and SD had higher rates than WWCPS rats (#/min: 6.5, 5.5, 1.5, respectively). When adjusted for strain differences in the frequency of attacks, SD as well as WWCPS rats had lower rates of pinning compared to LE rats. Both SD and WWCPS rats were less likely to use tactics of defense that promote pinning. Moreover, while the majority of the pins achieved in LE rats arose from the defender actively rolling over onto its back, the majority of pins in WWCPS rats arose because one partner pushed the other onto its back. SD rats were intermediate in this regard. Finally, once they do adopt the pin configuration, SD rats are less likely to remain supine than LE and WWCPS rats. That is, both SD and WWCPS rats have significantly fewer pins than LE rats, but a different combination of factors account for this. These data highlight the need to use a battery of measures for ascertaining the effects of experimental manipulations on play. Some suggested guidelines are provided.Ye

    The effect of playful experiences on the plasticity and metaplasticity of the brain

    Get PDF
    ix, 67 leaves ; 29 cmThe influence of play behavior on the brain was investigated through plasticity and metaplasticity methodology. Regions in both cortical and sub-cortical areas were investigated. Animals in both studies either experienced play with juvenile partners or did not experience play by being paired with an adult. Play experience alone was shown to affect the plasticity in the prefrontal cortex, although it did not show structural changes to sub-cortical regions. If animals were given nicotine after play experiences, the affects of play in the prefrontal cortex were abolished. In addition, playful behaviors appear to prime some sub-cortical regions of the brain for expression of later plasticity. Thus, play appears to alter the structure of multiple brain areas, but do so in different ways

    Exploring the brain-behaviour interface : the role of juvenile play experiences

    Get PDF
    In laboratory rats, juvenile play behavior has been shown to influence the development of the medial prefrontal cortex (mPFC) and the experience of interacting with multiple partners has been shown to influence the orbital frontal cortex (OFC). Several studies in this thesis further explored these relationships. Two main findings arose. 1).The play-induced changes to the mPFC and the partner-induced changes to the OFC differ in their longevity. The neural remodeling of the mPFC remains relatively unchanged into adulthood, whereas that of the OFC decreases over time, suggesting that these two areas of the prefrontal cortex serve different roles in social behavior. 2) Though wild rats play in a similar manner to domesticated rats, the play-induced changes to the mPFC are not present, suggesting that complex patterns of play fighting have evolved independently of their role in the development of the mPFC. These findings shed new light on play.Funding Agencies: Natural Science and Engineering Research Council of Canada, Alberta Innovates-Health Solution

    A Monte Carlo Event Generator for W Off-shell Pair Production including Higher Order Electromagnetic Radiative Corrections

    Full text link
    We present the Monte Carlo event generator {\tt WOPPER} for pair production of WW's and their decays at high energy e+ee^+e^- colliders. {\tt WOPPER} includes the effects from finite WW width and focusses on the calculation of higher order electromagnetic corrections in the leading log approximation including soft photon exponentiation and explicit generation of exclusive hard photons.Comment: Contribution to the Second Workshop -- Munich, Annecy, Hamburg: e+ee^+e^- Collisions at 500~GeV: The Physics Potential, November 20, 1992, to April 3, 1993. LaTeX, 6 pages + 4 uuencoded EPS figures, IKDA 93/28, SI-93-

    Homozygous CREM-IbΔC-X Overexpressing Mice Are a Reliable and Effective Disease Model for Atrial Fibrillation

    Get PDF
    Background: Atrial fibrillation (AF) is a significant cause of morbidity and mortality with foreseeably increasing prevalence. While large animal models of the disease are well established but resource intensive, transgenic AF mouse models are not yet widely used to develop or validate novel therapeutics for AF. Hemizygous mice with a cardiomyocyte-specific overexpression of the human cAMP response element modulator (CREM) isoform IbΔC-X spontaneously develop AF on grounds of an arrhythmogenic substrate consisting of alterations in structure, conduction, and calcium handling.Objective: We investigated if homozygous expression of the CREM-IbΔC-X transgene in mice alters the time course of AF development, and if homozygous CREM-IbΔC-X transgenics could be suitable as a disease model of AF.Methods: Southern Blot, quantitative real-time PCR, and immunoblotting were used to identify and verify homozygous transgenics. Cardiac gravimetry, quantitative real-time RT-PCR, histology, survival analysis, and repeated ECG recordings allowed assessment of phenotypic development and effects of antiarrhythmic drugs.Results: Homozygous animals could be identified by Southern blot and quantitative PCR, showing a strong trend to increased transgenic protein expression. In homozygous animals, atrial hypertrophy appeared earlier and more pronounced than in hemizygous animals, going along with an earlier onset of spontaneous AF, while no increased early mortality was observed. Application of a rate-controlling drug (esmolol) led to the expected result of a decreased heart rate. Application of a rhythm-controlling drug (flecainide) showed effects on heart rate variability, but did not lead to a definitive conversion to sinus rhythm.Conclusion: We suggest homozygous CREM-IbΔC-X overexpressing mice as a reliable model of early onset, rapidly progressive AF

    Indonesian Throughflow drove Australian climate form humid Pliocene to arid Pleistocene

    Get PDF
    Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely receiving year-round rainfall, but after ~3.3 Ma, climate shifted toward an increasingly seasonal precipitation regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established seasonal and orbitally controlled precipitation were in place by ~2.4 Ma, well after the intensification of Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating teleconnections between tropical and high-latitude climate systems.published_or_final_versio

    An Objective Method to Assess and Recommend Exertion and Exercise Targets for Return to Play Post concussion

    Get PDF
    Introduction. Concussions are of significant concern for athletic trainers, and there is a critical need to objectively and safely allow an athlete to return to play. In sports the objective is return as safely and soon as possible. Exertion is a consideration regarding progressing an athlete back to play. The ability to exert in cardiovascular and strength and conditioning contexts are two critical steps in most return to play protocols. Being able to make objective recommendations is urgently needed, as trial and error leads to unnecessary risk of eliciting symptoms and/or causing setbacks. Objective. The object of this paper is to present the athletic trainer with data associated with a methodology that can be used to aid in designing a cardiovascular and strength training program post concussion. This objective measure does not rely on subjective patient reports of symptoms and utilizes a reflex based assessment method. Description. The transient exertion related carotid (TERC) murmur is a murmur that is heard at the carotid arteries during exercise. It normally is heard at around a heart rate of 150, but is heard at lower heart rates in patients who have sustained a concussion. Listening for the TERC murmur during a cardiovascular and strength training assessment can be used to provide information to the athletic trainer about safer target heart rates or safer lifting strategies post-concussion. We present data concerning 71 athletes (mean age 20.8 years) who were assessed for cardiovascular conditioning and body weight assessment. With 73% of the cardio assessment subjects, a TERC murmur was detected at a heart rate of 127.2 bpm (± 16 SD). For the strength assessment 42.1% had a TERC murmur. Clinical advantages. The clinical advantage of the TERC murmur is that it can be utilized by any athletic trainer trained to take a blood pressure. It provides objective information concerning safe target heart rates that will allow an athletic trainer to recommend appropriate exercise prescriptions. The TERC murmur assessment can also be used to help guide strength training protocols to facilitate safe return. Being able to safely recommend a means by which an athlete can recommence their training (cardiovascular and/or strength training) may accelerate return to play as well as aid in keeping the athlete happy, healthy and engaged

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells

    Get PDF
    International audienceMicrotubules (MTs) play an important role in many cellular processes and are dynamic structures regulated by an important network of microtubules-associated proteins, MAPs, such as Tau. Tau has been discovered as an essential factor for MTs formation in vitro, and its region implicated in binding to MTs has been identified. By contrast, the affinity, the stoichiometry, and the topology of Tau-MTs interaction remain controversial. Indeed, depending on the experiment conditions a wide range of values have been obtained. In this chapter, we focus on three biophysical methods, turbidimetry, cosedimentation assay, and Förster Resonance Energy Transfer to study Tau-tubulin interaction both in vitro and in cell. We highlight precautions that must be taken in order to avoid pitfalls and we detail the nature of the conclusions that can be drawn from these methods about Tau-tubulin interaction
    corecore