734 research outputs found

    Effects of Large Wing-Tip Masses on Oscillatory Stability of Wing Bending Coupled with Airplane Pitch

    Get PDF
    An examination of oscillatory stability for a straight-winged airplane with large concentrated wing-tip masses was made using wing-bending and airplane-pitching degrees of freedom and considering only quasi-steady aerodynamic forces. It was found that instability caused by coupling of airplane pitching and wing bending occurred for large ratios of effective wing-tip mass to total airplane mass and for coupled wing-bending frequencies near or below the uncoupled pitching frequency. Boundaries for this instability are given in terms of two quantities: (1) the ratio of effective tip mass to airplane mass, which can be estimated, and (2) the ratio of the coupled bending frequency to the uncoupled pitch frequency, which can be measured in flight. These boundaries are presented for various values of several airplane parameters

    An approximate method for determining response of nonlinear dynamic systems to random disturbances

    Get PDF
    Approximation method for determining response of nonlinear dynamic systems to random disturbance

    Resolving Star Formation on Sub-Kiloparsec Scales in the High-Redshift Galaxy SDP.11 Using Gravitational Lensing

    Full text link
    We investigate the properties of the interstellar medium, star formation, and the current-day stellar population in the strongly-lensed star-forming galaxy H-ATLAS J091043.1-000321 (SDP.11), at z = 1.7830, using new Herschel and ALMA observations of far-infrared fine-structure lines of carbon, oxygen and nitrogen. We report detections of the [O III] 52 um, [N III] 57 um, and [O I] 63 um lines from Herschel/PACS, and present high-resolution imaging of the [C II] 158 um line, and underlying continuum, using ALMA. We resolve the [C II] line emission into two spatially-offset Einstein rings, tracing the red- and blue-velocity components of the line, in the ALMA/Band-9 observations at 0.2" resolution. The values seen in the [C II]/FIR ratio map, as low as ~ 0.02% at the peak of the dust continuum, are similar to those of local ULIRGs, suggesting an intense starburst in this source. This is consistent with the high intrinsic FIR luminosity (~ 3 x 10^12 Lo), ~ 16 Myr gas depletion timescale, and < 8 Myr timescale since the last starburst episode, estimated from the hardness of the UV radiation field. By applying gravitational lensing models to the visibilities in the uv-plane, we find that the lensing magnification factor varies by a factor of two across SDP.11, affecting the observed line profiles. After correcting for the effects of differential lensing, a symmetric line profile is recovered, suggesting that the starburst present here may not be the result of a major merger, as is the case for local ULIRGs, but instead could be powered by star-formation activity spread across a 3-5 kpc rotating disk.Comment: 17 pages, 8 figures, 3 tables, accepted for publication in the Astrophysical Journa

    First mid-infrared spectrum of a faint high-z galaxy: Observations of CFRS 14.1157 with the Infrared Spectrograph on the Spitzer Space Telescope

    Full text link
    The unprecedented sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope allows for the first time the measurement of mid-infrared spectra from 14 to 38 microns of faint high-z galaxies. This unique capability is demonstrated with observations of sources having 16 micron fluxes of 3.6 mJy (CFRS 14.1157) and 0.35 mJy (CFRS 14.9025). A spectral-fitting technique is illustrated which determines the redshift by fitting emission and absorption features characteristic of nearby galaxies to the spectrum of an unknown source. For CFRS 14.1157, the measured redshift is z = 1.00+/-0.20 in agreement with the published result of z = 1.15. The spectrum is dominated by emission from an AGN, similar to the nucleus of NGC 1068, rather than a typical starburst with strong PAH emission like M82. Such spectra will be crucial in characterizing the nature of newly discovered distant galaxies, which are too faint for optical follow-up.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 5 figure

    HST Morphologies of z~2 Dust Obscured Galaxies I: Power-law Sources

    Get PDF
    We present high spatial resolution optical and near-infrared imaging obtained using the ACS, WFPC2 and NICMOS cameras aboard the Hubble Space Telescope of 31 24um--bright z~2 Dust Obscured Galaxies (DOGs) identified in the Bootes Field of the NOAO Deep Wide-Field Survey. Although this subset of DOGs have mid-IR spectral energy distributions dominated by a power-law component suggestive of an AGN, all but one of the galaxies are spatially extended and not dominated by an unresolved component at rest-frame UV or optical wavelengths. The observed V-H and I-H colors of the extended components are 0.2-3 magnitudes redder than normal star-forming galaxies. All but 1 have axial ratios >0.3, making it unlikely that DOGs are composed of an edge-on star-forming disk. We model the spatially extended component of the surface brightness distributions of the DOGs with a Sersic profile and find effective radii of 1-6 kpc. This sample of DOGs is smaller than most sub-millimeter galaxies (SMGs), but larger than quiescent high-redshift galaxies. Non-parametric measures (Gini and M20) of DOG morphologies suggest that these galaxies are more dynamically relaxed than local ULIRGs. We estimate lower limits to the stellar masses of DOGs based on the rest-frame optical photometry and find that these range from ~10^(9-11) M_sun. If major mergers are the progenitors of DOGs, then these observations suggest that DOGs may represent a post-merger evolutionary stage.Comment: 23 pages, 9 figures, 6 tables, accepted to ApJ; lower limits on stellar mass revised upwards by factor of (1+z

    Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope

    Full text link
    We have surveyed a field covering 9.0 degrees^2 within the NOAO Deep Wide-Field Survey region in Bootes with the Multiband Imaging Photometer on the Spitzer Space Telescope (SST) to a limiting 24 um flux density of 0.3 mJy. Thirty one sources from this survey with F(24um) > 0.75 mJy which are optically very faint (R > 24.5 mag) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. Redshifts derived primarily from strong silicate absorption features are reported here for 17 of these sources; 10 of these are optically invisible (R > 26 mag), with no counterpart in B_W, R, or I. The observed redshifts for 16 sources are 1.7 < z < 2.8. These represent a newly discovered population of highly obscured sources at high redshift with extreme infrared to optical ratios. Using IRS spectra of local galaxies as templates, we find that a majority of the sources have mid-infrared spectral shapes most similar to ultraluminous infrared galaxies powered primarily by AGN. Assuming the same templates also apply at longer wavelengths, bolometric luminosities exceed 10^13 L(solar).Comment: Accepted for publication on 7 Feb 2005 in ApJL. 7 pages 2 figure

    The Energetics of Molecular Gas in NGC 891 from H_2 and Far-infrared Spectroscopy

    Get PDF
    We have studied the molecular hydrogen energetics of the edge-on spiral galaxy NGC 891, using a 34 position map in the lowest three pure rotational H_2 lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1), and S(2) lines are bright with an extinction-corrected total luminosity of ~2.8 × 10^7 L_☉, or 0.09% of the total-infrared luminosity of NGC 891. The H_2 line ratios are nearly constant along the plane of the galaxy—we do not observe the previously reported strong drop-off in the S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find no evidence for the very massive cold CO-free molecular clouds invoked to explain the past observations. The H_2 level excitation temperatures increase monotonically indicating that there is more than one component to the emitting gas. More than 99% of the mass is in the lowest excitation (T_(ex) ~ 125 K) "warm" component. In the inner galaxy, the warm H_2 emitting gas is ~16% of the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction is twice as high. This large mass of warm gas is heated by a combination of the far-UV photons from stars in photodissociation regions (PDRs) and the dissipation of turbulent kinetic energy. Including the observed far-infrared [O I] and [C II] fine-structure line emission and far-infrared continuum emission in a self-consistent manner to constrain the PDR models, we find essentially all of the S(0) and most (70%) of the S(1) line arise from low excitation PDRs, while most (80%) of the S(2) and the remainder of the S(1) line emission arise from low-velocity microturbulent dissipation

    The Energetics of Molecular Gas in NGC 891 from H2 and FIR Spectroscopy

    Get PDF
    We have studied the molecular hydrogen energetics of the edge-on spiral galaxy NGC\,891, using a 34-position map in the lowest three pure rotational H2_2 lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1), and S(2) lines are bright with an extinction corrected total luminosity of 2.8×107\sim2.8 \times 10^{7} L_{\odot}, or 0.09\% of the total-infrared luminosity of NGC\,891. The H2_2 line ratios are nearly constant along the plane of the galaxy -- we do not observe the previously reported strong drop-off in the S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find no evidence for the very massive cold CO-free molecular clouds invoked to explain the past observations. The H2_2 level excitation temperatures increase monotonically indicating more than one component to the emitting gas. More than 99\% of the mass is in the lowest excitation (Tex_{ex} \sim125 K) ``warm'' component. In the inner galaxy, the warm H2_2 emitting gas is \sim15\% of the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction is twice as high. This large mass of warm gas is heated by a combination of the far-UV photons from stars in photo-dissociation regions (PDRs) and the dissipation of turbulent kinetic energy. Including the observed far-infrared [OI] and [CII] fine-structure line emission and far-infrared continuum emission in a self-consistent manner to constrain the PDR models, we find essentially all of the S(0) and most (70\%) of the S(1) line arises from low excitation PDRs, while most (80\%) of the S(2) and the remainder of the S(1) line emission arises from low velocity microturbulent dissipation.Comment: Accepted for publication in The Astrophysical Journal. Figure 10 available at http://www.physics.uoc.gr/~vassilis/papers/ngc891.pd

    MIPS J142824.0+352619: A Hyperluminous Starburst Galaxy at z=1.325

    Full text link
    Using the SHARC-II camera at the Caltech Submillimeter Observatory to obtain 350 micron images of sources detected with the MIPS instrument on Spitzer, we have discovered a remarkable object at z=1.325+/-0.002 with an apparent Far-Infrared luminosity of 3.2(+/-0.7) x 10^13 Lsun. Unlike other z>1 sources of comparable luminosity selected from mid-IR surveys, MIPS J142824.0+352619 lacks any trace of AGN activity, and is likely a luminous analog of galaxies selected locally by IRAS, or at high redshift in the submillimeter. This source appears to be lensed by a foreground elliptical galaxy at z=1.034, although the amplification is likely modest (~10). We argue that the contribution to the observed optical/Near-IR emission from the foreground galaxy is small, and hence are able to present the rest-frame UV through radio Spectral Energy Distribution of this galaxy. Due to its unusually high luminosity, MIPS J142824.0+352619 presents a unique chance to study a high redshift dusty starburst galaxy in great detail.Comment: 6 pages, 3 figures, accepted for publication in Ap
    corecore