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ABSTRACT 

An approximate method is presented for determining the 

means and covariances of the state variables of nonlinear, 

nonstationary dynamic systems having random initial conditions 

and being excited by white noise or random disturbances which 

can be derived from white noise. Application of the method 

is illustrated on several simple examples and useful formulas 

for practical application as well as some helpful FORTRAN 

subprograms are given in the appendices. Comparison of results 

obtained by this approximate method with some known exact 

solutions and with solutions obtained by a Monte Carlo 

technique are given to aid in evaluating the accuracy of the 

method. 
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INTRODUCTION 

There are many problems in engineering characterized 

by such needs as prediction of performance, estimation of 

structural loads, determination of trajectories, or optimization 

of parameter values for dynamic systems operating in environments 

and with tasks which might only be known in a probabilistic 

or statistical sense. Such problems have led to a search 

for practical methods of determining statistical properties 

of the state or outputs of a dynamic system from the mathematical 

model of the system and a statistical model of the disturbances 

and inputs. 

Perhaps the oldest and most general approach to problems 

such as those indicated above is through the Fokker-Planck 

partial differential equation. This approach is based on 

techniques developed around the beginning of the century for 

the study of diffusion and Brownian motion, but a more recent 

presentation of the use of the Fokker-Planck (or Kolmogorov) 

equation for problems of current interest to engineers is 

given, for example, in Reference 1. The Fokker-Planck partial 

differential equation governs the evolution from a known 

initial condition of the joint probability density function 

of the state variables of a nonlinear, time-varying system 

described by ordinary differential equations and excited by 

white, gaussian noise. 



Unfortunately, analytic or closed form solutions of the 

Fokker-Planck equation, even for stationary probability 

densities of the state variables, for systems of engineering 

interest are rare, and nonstationary solutions are almost 

nonexistant. Worse than this, however, is that numerical 

integration of the Fokker-Planck equation on a digital computer, 

at least by finite difference methods, requires a prohibitive 

amount of storage for systems of order greater than 3 or 4 

since an n-dimensional density function must be stored for 

an nth order dynamic system, 

Because of the difficulties of practical application of 

the Fokker-Planck approach, a number of other more practical 

approaches to the response of dynamic systems to random dis- 

turbances have evolved which usually sacrifice the generality 

or precision of the Fokker-Planck equation for computational 

ease. Some of the more well known methods are mentioned. 

Several methods settle for finding the means and variances 

or covariances of the state variables (first and second joint 

moments of the probability density function) rather than the 

density function itself, thus greatly simplifying the statistical 

description of the system state variables. 

density method (e.g., see Reference 2 or 5) can be used to 

find the power spectral density (Fourier transform of the auto- 

correlation function) of any state variable of a constant-co- 

efficient, linear system subjected to stationary random inputs 

with known power spectral densities. Stationary means and 

variances can be found from the power spectral densities. 

The power spectral 
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This method is fairly easy to use and lends itself well to 

machine computation but is restricted to linear, stationary 

problems. 

An extension of the power spectral density method to the 

approximate treatment of a class of nonlinear, stationary 

problems is known as the equivalent linearization, gaussian 

input describing function, or Booton-Kazakov .method and is 

treated extensively in Reference 3 .  This method produces the 

same type of results as the power spectral density method 

for linear systems, but the computations are much more 

difficult, especially for anything except very low order 

systems, and are not easily relegated to computer solution. 

The nature of the approximation is not well understood and 

the method is known to give grossly invalid results in some 

cases. 

Nonlinear, stationary problems have also been treated by 

applying the power spectral density method to problems which 

can be reduced to a sequence of linear problems by the 

perturbation method of Poincare (see Reference 4 ) .  The type 

of nonlinear problem which can be treated by this approach 

is somewhat limited and the computational procedure is quite 

cumbersome for systems larger than first or second order. 

Nonstationary problems can arise from considering 

statistical behavior of a system over a finite observation 

time, from dynamic systems described by nonautonomous or time- 

dependent differential equations, or from disturbances with. 

time varying statistical properties. There are two basic 
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approaches to the treatment of nonstationary problems in 

linear systems. The first, called the adjoint equation 

method, allows the computation of the mean and variance 

of any linear combination of state variables at a single 

time by just integrating essentially the adjoint differential 

equations of the system once with a suitable set of final 

conditions. The adjoint equation method is particularly 

efficient for problems where the terminal value of a mean 

and variance is required (e.g., terminal guidance of a missile) 

and is well suited to both analog and digital computation. 

The second method is the mean and covariance equation 

approach which yields a time history of the complete set of 

means and covariances of the system states for an nth order 

linear system by integration of a set of n(n+ 3)/2 differential 

equations. This approach is also very suitable for analog 

and digital computation. It requires more work than tne 

adjoint equation method but gives much more information. 

Both the adjoint equation method and the covariance equation 

method are presented in Reference 5. 

A completely different approach to responses of dynamic 

systems of any type to random disturbances is by means of 

a "random experiment" or Monte Carlo method. In this method 

one would obtain a large number of solutions to the system 

equations with simulated "random" inputs and estimate from 

these runs the desired statistical measures by making estimates 

based on finite sample size. This technique is used for . 

comparison purposes in the present study and is discussed in 
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Appendix D. Its chief advantages are its generality and 

simplicity of implementation. The main disadvantage is the 

long computation time required to obtain sufficiently 

accurate results. 

The subject of this study is an approximate method for 

obtaining time histories of the complete set of means and 

covariances of the state variables of nonlinear, nonstationary 

systems subjected to nonstationary random disturbances. The 

method is closely related to both the equivalent linearization 

approach (Booton-Kazakov) and the mean and covariance equation 

approach for linear systems. The method is presented and 

illustrative applications given in Section 11. Since the 

method is approximate, a discussion of its validity is given 

in Section 111. 
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11. MEAN AND COVARIANCE EQUATIONS FOR NONLINEAR SYSTEMS 

A. MEAN AND COVARIANCE EQUATIONS 

Consider a dynamic process which can be described by 

the set of first order differential equations 

m 
i = fi(x l,...,x t) + 1 e (t)qk(t) ik 1=1 i n' 

i=l ,....,n 

where the qk, k=l,...,m, are independent white noise inputs 

with 

qk(t)qi(t+r) = & ( T I ,  k=i 

= 0, kfi 

If the means mi and covariancg $I 

variables of the system(2.l)are defined as 

of the state ij 

- 
m = x  i i 

the rates of change of these quantities can be expressed as 



m . - 
ikejk - (xi-m f. + (x.-m. f + 1 e 

i) 3 7 3 )  i k=l +i-j 

i,j = 1, ..., n 

where the fi, i=l, ..., n, are those of the system (2.1). 
result can be obtained either by averaging the Fokker-Planck 

equation (Reference 6) or, with slightly less restriction 

by averaging the sys tem equations (2.1) directly (see Appendix 

A). Note that $ij=$ji by definition so that there are 

really only n(n+1)/2 distinct covariances equations instead 

of the apparant n . 

This 

2 

If the averages si and (xi-m f. on the right-hand 
i) 3 

sides of (2.2) and (2.3) could be expressed completely as functions 

of mi, $ij, and t, (i,j = 1 ,... ,n), equations (2.2) and (2.3) 
become a set of ordinary differential equations governing 

the evolution in time of the state variable means and 

covariances from their initial values. This is analogous 

to the evolution of the joint probability density function 

of the system state variables governed by the Fokker-Planck 

partial differential equation. 

In the case where the system (2.1) is linear 

n 
fi(xl, ..., x t) = a (t)x. + bi(t) n' ij 3 

and the averages gi and (xj-mj)fi are easily evaluated in 
terms of mi, $ij, and t ( i , j = l ,  ..., n) using the alternative 
forms of the definitions, 
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x = x x -m,) 
i) j i( j 3 

= (xi-m x -m.) = (xi-m 
'ij i)( j 1 

the resulting mean and covariance equations are the same 

as those discussed in Reference 5 for example. 

In the nonlinear case the required averages on the right 

hand side of (2.2) and (2.3) cannot in general be expressed as 

functions of means and covariances alone, since either the 

complete joint probability density function or at least 

higher joint moments are necessary. 

B. USE OF THE GAUSSIAN APPROXIMATION FOR NONLINEAR SYSTEMS 

In order to allow equations (2.2) and (2.3) to be applied 

to the analysis of nonlinear systems, one must approximate 

the joint probability density function of the states with a 

density function which is completely determined by its first 

and second joint moments,(mi and $ij). In-the present study 

the joint gaussian probability density function is used for the 

approximation. 

Although there are various philoxophical rationalizations 

for using the joint gaussian density, the real reason is 

computational expediency. There are .available many useful 

mathematical relations for gaussian distributed variables 

which are very helpful in forming the averages Df nonlinear 

functions which are needed in equations (2.2) and (2.3). The 

validity of this approximation is discussed in Section 111. 

The general expression for an n-dimensional joint 

gaussian density function is 
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where the elements of the column matrix 2 are 

- Zi - Xi - m i 

and the elements of the square matrix @ are +ij. 

With the assumption that the system state variables 

have a gaussian joint density function, the required 

averages can be written formally as 

- m m  
fi = -m /..~fi(X1,...,Xn)pn(Xl,...,Xn)dXl.. -m dXn 

m m  

dXn (x -m 1 fi = 1.. / (X . -m . ) fi (XI , . . . ,Xn) pn (X1 r . .  . , Xn) dX1. . . 
j -m -m 3 7  

Since pn(X1,...,X ) is dependent on means and covariances n 
only, the averages expressed in ( 2 . 7 )  are functions of means 

and covariances only making ( 2 . 2 )  and ( 2 . 3 )  a set of 

differential equations for mi and $ij (i,j=l,...,n). 

If the n-tuple integrals of ( 2 . 7 )  always had to be 

evaluated as n-tuple integrals, solutions of the mean and 

covariance equations would be an extremely cumbersome process 

even for a digital computer. Fortunately, the nature of many 

nonlinear problems of interest is such that the functions fi 

in equations (2.1) are composed of a linear part and one or 

more nonlinear functions of only one or two of the state variables 

at a time. Consideration of some simple example problems will 

serve to illustrate the practical aspects of application of 

the mean and covariance equations, the nature of the solutions, 
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and t h e  types  of problems which can be t r e a t e d .  

C. ILLUSTRATIVE EXAMPLES 

Example 1. F i r s t  cons ide r  t h e  s imple  second o r d e r  

system shown i n  t h e  b lock  diagram below. The system could  

FIG. 2 .1 .  Block diagram f o r  example 1. 

e i t h e r  r e p r e s e n t  a s a t u r a t i n g  r e g u l a t o r  system or  a n o n l i n e a r  

spring-mass system wi th  a very broad-band, s t a t i o n a r y  random 

d i s t u r b i n g  f o r c e .  

I n  o r d e r  t o  o b t a i n  t h e  mean and cova r i ance  e q u a t i o n s ,  

t h e  system e q u a t i o n s  must f i rs t  be p u t  i n t o  t h e  f i r s t  o r d e r  

form of ( 2 . 1 ) .  

; = x2 1 

. x2 - - -x - s a t ( x l )  + e q ( t )  2 
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where e is a constant which allows us to examine various 

magnitudes of random disturbance and q(t) is white noise 

with q(t)q(t+.) = & ( T I .  
In writing the mean and covariance equations(2.2;and 

(2.3 for the system (z.@ the averages involving linear terms 

can be written directly in terms of means and covariances 

from the definition (2.5) and the following results are 

obtained: 

x i  = m2 1 

m = -m - sat(xl) 2 2 

The relation 

equations. 

$ j=$ has been 

The nex- step is to use 

used to eliminate one 

(2.10) 

of the 

he gaussian approxima-ion for 

the joint probability density of the state variables x1 and 

x to obtain sat(xl) , (xl-ml)sat(xl), (X2-m2)Saf(x as 

functions of ml, m2' $llf $12, $22. 

of the gaussian approximation from Appendix B is 

2 1 
One immediate result 

(2.11) 
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where g(x.) is any nonlinear function of a single variable. 

In the present example this means 
1 

(xl-ml) sat (x,) (x2-m2)sat(x ) = - 912 
$11 1 (2.12) 

so that now only two troublesome averages 'sat(xl) and 
-m )sat(x ) remain to be evaluated. These must be obtained (xl 1 1 

from 

.f (Xl-ml) sat (X,) exp (xl-ml)sat(x ) = 1 
l J2.rr911-a 

(2.13) 

In this example it happens that the integrals (2.13) 

can be obtained in a "closed" form as a rather involved 

expression containing error functions and exponentials, but 

usually no such analytic expression is available at all. 

For this reason several FORTRAN subprograms have been written 

to evaluate integrals of the type(2.13) for general nonlinear 

functions of a single variable by several different 

approximations. The description of these subprograms as 

well as one for nonlinear functions of two variables is given 

in Appendix C. 

The integrals (2.13)when evaluated, whether analytically 

or numericaliy, are functions of ml and $ll. This fact 
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allows equations(2.9)and(2.10)to be considered as set of 

differential equations for m 1' m2f $11' 412, 422 which can 

be numerically integrated on a digital computer. 

To obtain a solution to the differential equati0r.s a 

must be m2f $11, 412, $22 set of initial values for ml, 

specified. If the system were at rest and its state completely 

known at time t=O, all initial values would be zero, i.e. 

the mean values of x1 and x2 would be zero and the variances 

about the mean values would be zero. The resulting solution 

for a specified value of e (the disturbance magnitude) would 

indicate the uncertainty of the system state at any subsequent 

time. Such a solution is shown in Figure(2.2). The solution 

for a non-zero initial mean value of x is shown in Figure 

(2.3). 

in the initial values of +11 and $22. 

were uncertain initially but correlated with each other 

1 
Any initial uncertainty in x1 or x2 would be reflected 

If both x1 and x2 

+12 would be non-zero initially. 

Note that these example transient solutions are approaching 

the same steady state solution. Since this example problem 

is a stable, time-invariant system excited by a stationary 

random disturbance, a steady state or stationary solution 

to the mean and covariance equation can be expected. In 

principal the stationary solution could be obtained by setting 

the right-hand sides of equations(2.9) and(2.10) equal to zero 

and solving the resulting nonlinear equations. For this 

particular example the task is not too difficult to do 

graphically or numerically and the result corresponds exactly 
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t o  t h a t  o b t a i n e d  by t h e  s t a t i s t i c a l  l i n e a r i z a t i o n  method 

d e s c r i b e d  i n  Reference 3 .  The s t eady  s t a t e  r e s u l t s  a r e  

d i s c u s s e d  i n  S e c t i o n  111. For more r ea l i s t i c  problems, 

however, t h e  s o l u t i o n  i s  t e d i o u s  and o f t e n  produces more 

t h a n  one s o l u t i o n  which may o r  may n o t  be a s t a b l e  o r  

even meaningful  s o l u t i o n  ( e . g . ,  a non-pos i t ive  covar iance  

m a t r i x  makes no s e n s e  p h y s i c a l l y ) .  For  t h i s  r e a s o n ,  s o l u t i o n  

of t h e  d i f f e r e n t i a l  equa t ions  f o r  a reasonably  long t i m e  

p e r i o d  i s  probably t h e  most a t t r a c t i v e  method of f i n d i n g  

s t e a d y  s t a t e  s o l u t i o n s  as it w i l l  converge only  on s t a b l e ,  

meaningful  s o l u t i o n s  and g i v e  a d d i t i o n a l  u s e f u l  in format ion  

on t r a n s i e n t  behavior .  
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1.0 

0,6 

0.4 

0.2 

0.0 
0 I 2 3 4 5 

t 
, 

(b)e = 2.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 

r 

0 I 2 3 4 5 
t 

FIG. 2.2. Covariance solutions f o r  example 1 with the 
initial values of all means and covariances zero. 
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FIG. 2.3. Solutions for example 1 with m1(0)=5.0 and 
initial values of m2 and covariances zero. 
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FIG. 2.3. Continued. 
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Example 2. Suppose we wish to examine the response 

of the system of example 1, Figure(2.Q to a random 

disturbance of much lower frequency content than could 

be reasonably approximated by white noise. For this 

example a disturbance is treated whose statistical model is 

generated by the response of a first order system to 

white noise. This is analogous to pre-filtering white noise 

in power spectral density analysis methods to produce non- 

white disturbance power spectra. The system block diagram 

is shown in Figure (2.4). 

FIG. 2.4. Block diagram for example 2. 
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The system differential equations are written in first 

order form as 

r. 

- sat(xl) + x3 
system 
dynamics 

disturbance . 
model x3 = -Qx3 + neq € t) (2.14) 

where e again is a constant which determines the magnitude 

of the white noise input, n is the "band-pass" frequency 

of the disturbance model or filter, and q(t)q(t+T) = 6 ( r )  

(white noise). . 

Now the differential equation which describes the 

dynamics of the disturbance model is treated as though it 

were just a part of a new system with a white noise dis- 

turbance in the form of equations(2.l). The mean and 

covariance equations, then, are written following the form 

of (2.2) and (2.3). 

ml = m2 

. - sat x ) + m3 m2 = -m 2 1 . 
m3 = -am3 

-19- 
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2 2  i3, = -2n+33 + e n (2.16) 

The gaussian approximation result of equation (2.111 

was used in the third and fifth covariance equations(2.16) 

to reduce the number of nonlinear terms to be averaged to 

sat(xl) and (x,-m) sat(xl) as in example 1, so equations (2.16) 

are already approximate. Note again that only the diagonal 

elements and elements below the diagonal of the matrix of 

' s  were used because of symmetry. 4i j 
If we now consider that we have available the functional 

implied by the integrals (2.131, equations (2.15) and (2.16) are 

ready to be integrated to obtain the time histories of 

$11, $12, 922' $13 '23 or 933 their steady state 

values. To obtain steady state results the only requirement 

on the initial conditions is that the initial matrix of 

' s  be positive semi-definite, but some care is required @i j 
in selecting proper initial conditions for the nonstationary 

or transient solution. 

If we wish to obtain the transient response of the system 

means and covariances mlf m2, $11, $12, $22 to the application 

-20- 



of a stationary, non-white noise disturbance x3 at t=O, the 

values of the means m3 and variance $ 3 3  of the disturbance 

must initially be at their steady state or stationary values, 

otherwise x3 would not be a stationary process. 

values of m3 and $ 3 3  can be found by setting the right-hand 

sides of their respective differential equations (number 3 

of (2.15) and number 6 of (2.16)) equal to zero. 

is 

The stationary 

The result 

2 

3 2 
- e R  

= 0, $ 3 3  - - m 

These two differential equations can be eliminated and m3 

and $ 3 3  replaced in the remaining equations by their steady 

state values above. 

nonstationary disturbances could be treated by using other 

initial values for m3 and $ 3 3 .  

On the other hand, a class of intentionally 

Some solutions for various values of R are shown in 

Figure(2.5). 

is known exactly to be at rest at t=O. 

The disturbance is stationary and the system 

Example 3 .  Another possible application of the mean 

and covariance equations might be for systems which have a 

constant physical parameter whose value is uncertain as well 

as disturbances which are random functions of time. As a 

simple illustration consider a system described by 

i = ax + eq(t) (2.17) 

-21- 
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where t h e  c o n s t a n t  a has  a n  expected v a l u e  ma and a v a r i a n c e  

$ a a *  
To  g e t  t h e  system i n t o  t h e  form(2.1), a i s  t r e a t e d  a s  

a second s ta te  v a r i a b l e  s a t i s f y i n g  t h e  d i f f e r e n t i a l  equa t ion  

0 

a = O  ( 2 . 1 8 )  

From t h e  augmented system equa t ions  ( 2 . 1 7 )  and ( 2 . 1 8 ~ ~  t h e  

mean and cova r i ance  equa t ions  can be ob ta ined  u s i n g ( 2 . 2 ) a n d  

(2.3) a s  

. - 
m = ax 

X . 
m = O  a . 2 
$xx = + 2 ( Z i i i 7 X T  + e 

. = o  +aa ( 2 . 1 9 )  

The second and f i f t h  equa t ions  o f ( 2 . 1 9 ) a r e  t r i v i a l  

s i n c e  ma and 

o u r  knowledge about  a ,  and they can be e l i m i n a t e d .  I n  t h e  

are c o n s t a n t  s t a t i s t i c a l  parameters  d e s c r i b i n g  

-m m from t h e  d e f i n i t i o n  of covar iance .  $ax a x f i r s t  e q u a t i o n  aX = 

There  are some t h i r d  moments appear ing  i n  t h e  t h i r d  and f o u r t h  

e q u a t i o n s  of (2 .19)which  w i t h  t h e  gauss i an  approximation can 

be  w r i t t e n  i n  terms of m x f  m a t  
$ x x t  

+aa from t h e  r e s u l t s  

i n  Appendix B. ( I t  i s  known t h a t  x and a w i l l  n o t  have a 

j o i n t  g a u s s i a n  d e n s i t y  d i s t r i b u t i o n  i n  g e n e r a l  b u t  

t h e  p r e s e n t  method proceeds  a s  though they  w i l l . )  
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The remaining equations in(2.19) after using the gaussian 

approximation become 
~ 

. 
+ m m  0 ax a x  m =  X 

- 
$ax - +mx$aa + ma@ax 

(2.20) 

Assuming the initial value (at t=O) of the covariance 

=O (i.e., initial value of x is not correlated with a) @ax 
the solution for mx and ox, is found to be 

(2.21) 

2 2ma t 
+ $,,(O)e + -  (1-e 1 

2mat e 
2ma 

(2.22) 

The nature of this solution and its relation to two 

exact solutions are discussed in Section 111. 

Other Examples. Some additional examples are discussed 

in Section I11 where the accuracy of the gaussian approximation 

is examined. 

D. 

AND OPTIMIZATION TECHNIQUES. 

MEAN AND COVARIANCE EQUATIONS AS THE BASIS OF ESTIMATION 

Although neither the estimation nor the optimization 

problem are treated here, a few words are in order to relate 

the mean and covariance equations as used in this study to 
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their application in estimation and optimization. 

If the joint probability density function of the state 

variables of the dynamic system(2.1)is approximated by a 

gaussian probability density function, as suggested, equations 

(2.2)and(2.3)become a set of coupled first order differential 

equations which can be integrated for a given set of initial 

means and covariances to give an approximate set of means 

and covariances of the system state variables at some later 

time. The means and covariances at this later time can be 

considered as conditional means and covariances since they 

depend in general on the means and covariances at the initial 

time. Since the gaussian approximation is being used to make 

these equations integrable, another interpretation is that 

the integration of equations(2.2)and(2.3)provide a gaussian 

approximation to the conditional joint probability density 

function of the states--that is conditional on the knowledge 

or the joint probability density function of the states at 

the initial time. 

There are many practical problems where this information 

alone is the desired result. 

determine the probability of a missile destroying a target 

from statistical knowledge of initial launch and targek 

conditions, assumed statistical models of noise, target motion, 

disturbances, and a mathematical model of the missile and 

guidance dynamics. 

babilistic description of structural loads is desired for 

design purposes. 

For instance one might wish to 

Or perhaps for the same missile a pro- 

In estimation and optimization this is just 

-25- 



a necessary step in the overall problem. 

Estimation. The nature of the so-called estimation 

problem is illustrated and the role of the mean and 

covariance equations in its treatment with a simple example. 

Suppose that a space vehicle is launched from earth at 

time t=tA on an interplanetary mission as illustrated in 

Figure 2.6. 

position) of the vehicle is observed with a certain accuracy 

which is represented as a joint probability density or 

perhaps as means and covariances of the state variables at 

time t=tA. At discrete times t=tgrtCf etc., during the 

flight it is intended to make radar observations of the 

vehicle's state to determine possible orbit corrections. 

At time tA the state (i.e., velocity and 

- 
- 1  

uncertainties 

t = t, 

L 

s y s t e m  
Dynamics state observations of 

t = tC 

t = tA [ E A R T H  ) 

FIG. 2.6. An estimation problem. 
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i The difficulty with this plan is that the uncertainty 

in the long range measurement of some of the state variables 

I of the system is very great (e.g., radar directional information 

would be very poor although range and range rate would be very 

accurate) and it is desirable to make the best possible estimate 

of the state based on the available information. This is an 

- 

estimation problem and we shall consider one possible approach 

to its solution. 

First consider what information on the state of the 

vehicle at t=tB is available before observation B at t=tB 

is made. 

covariances are known. If there is available a mathematical 

model of the vehicle dynamics and statistical models of the 

From observation A at t=tA initial means and 

disturbances and unknown parameters, the mean and covariance 

equations for the system can be integrated to t=tB to obtain 

an approximation to the means and covariances or the implied 

gaussian joint probability density distribution at t=tB 

(represented by large shaded area at tB). 

only an approximate solution is available, there is some 

knowledge of the system state just before the measurement at 

So,  even though 

t'tB. 

If in addition the nature of the measurement error is 

known (e.g., its bias or mean and its covariances with itself 

and the.system states) and the gaussian approximation is 

continued it is not difficult to obtain the conditional 

(on observation A) joint probability density of the state 

variables (the vector sB) and the observation variables (the 
vector gB) at t=tg given the observation zA denoted as 
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pxz (X 4 3  ,z 4 3  IKA) 

The c o n d i t i o n a l  j o i n t  p r o b a b i l i t y  d e n s i t y  

may be ob ta ined  s i n c e  it i s  j u s t  t h e  margina l  d e n s i t y  ob ta ined  

by i n t e g r a t i n g  t h e  preceding  d e n s i t y  over  a l l  t h e  X I S .  

The r eason  fo r  o b t a i n i n g  t h e s e  p a r t i c u l a r  c o n d i t i o n a l  

d e n s i t i e s  i s  t h a t  from them us ing  Bayes' theorem (Reference 

6 o r  7) t h e  c o n d i t i o n a l  j o i n t  p r o b a b i l i t y  d e n s i t y  of t h e  

system s ta te  $ a t  t=tB given bo th  o b s e r v a t i o n s  5 and 5 
can  be ob ta ined  as 

I n  o t h e r  words, t h e  j o i n t  d e n s i t y  of t h e  s ta te  v a r i a b l e s  

(hence  t h e  means and cova r i ances )  can be up-dated based on 

t h e  new o b s e r v a t i o n  a t  t=tg us ing  t h i s  r u l e  ( r e p r e s e n t e d  by 

t h e  s m a l l  shaded area a t  t=t,). I f  a " b e s t "  estimate of t h e  

system s t a t e  a t  t=tB is  d e s i r e d  one might t a k e ,  f o r  example, 

t h e  expec ted  v a l u e s  or  means of t h e  s ta tes  from t h e  new 

d e n s i t y  f u n c t i o n .  

Now t h e  mean and covar iance  e q u a t i o n s  are r e - i n i t i a l i z e d  

based  on t h e  o b s e r v a t i o n  a t  t=tg and t h e  procedure r epea ted  

a t  t=tC, e tc .  

t r e a t e d  i n  d e t a i l  i n  Reference 6 u s i n g  an  approximation t o  

Th i s  approach t o  t r a j e c t o r y  e s t i m a t i o n  i s  
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the mean and covariance equations almost identical to that 

of this study but reached by a much different approach. 

One can take the limit as observations are separated by less 

and less time until a method of treating continuous obser- 

vations is obtained. This is also treated in Reference 6 

for the nonlinear case as well as in Reference 7. 

The mean and covariance equations, then, play the role i 
of determining the "deterioration" of knowledge about the 

system state between observations and predicting something 

about what should be expected in the new observation based 

on old ones. 

Optimization. The role of the mean and covariance 

equations in optimization of dynamic systems is much more 

direct and obvious. 

probability of a missile, mentioned at the beginning of 

Part D, it is only natural to ask how missile parameters 

or gain changing programs might be altered to maximize 

the predicted hit probability. In the light of our 

approximate solution to the mean and covariance equations 

a similar but more tractable statement of the problem might 

be to minimize the expected value of the square of the 

terminal miss distance, which can be expressed in terms of 

the terminal means and covariances. 

In the example of predicting hit 

If a performance measure to be maximized or minimized 

can be expressed in terms of terminal means and covariances 

or as an integral over the run time of a function of these 

quantities, the optimization problem can be treated, in 

principle, like any other variational type of problem, the 
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on ly  d i f f e r e n c e  be ing  t h a t  t h e  mean and cova r i ance  e q u a t i o n s  

r e p l a c e  t h e  dynamic system equa t ions  as c o n s t r a i n t s .  

P r a c t i c a l l y ,  however, one of t h e  most u s e f u l  o p t i m i z a t i o n  

methods, t h e  g r a d i e n t  s e a r c h  ( e . g . ,  Reference 8 ) ,  becomes 

ve ry  d i f f i c u l t  t o  implement because t h e  r e q u i r e d  p a r t i a l  

d e r i v a t i v e s  of t h e  n o n l i n e a r  t e r m s  i n  and (xi-m f .  are 

n o t  e a s i l y  e v a l u a t e d  when those  averages  must be  ob ta ined  

numer ica l ly .  Therefore ,  o t h e r  approaches,  such as random 

s e a r c h ,  which do n o t  r e q u i r e  t h e  e v a l u a t i o n  of a g r a d i e n t  

must be  used.  Some p re l imina ry  s t u d i e s  on t h i s  s u b j e c t  w e r e  

made i n  Reference 9 f o r  op t imal  ad jus tment  of system 

parameters .  

i i) 3 
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111. ACCURACY OF THE GAUSSIAN APPROXIMATION IN 
NONLINEAR SYSTEMS 

A. GENERAL COMMENTS 

As indicated in Section 11, it is certainly possible to 

integrate the mean and covariance equations for nonlinear 

systems if the joint probability density of the system 

state variables is approximated with the gaussian joint 

density function. 

is the relation of the solutions obtained by such a gross 

approximation to the true solution. 

The next problem to be treated, of course, 

Ideally one would like to have a simple method to 

determine useful error bounds on the means and covariances 

for any system of interest. 

at least, no such method has been found. 

However, in the present study, 

As a result of this inability to bound errors, an 

unsatisfactory but informative approach compares approximate 

solutions of several specific examples to exact solutions or 

Monte Carlo results. In Part B some examples are considered 

which produce reasonable results when treated by the 

approximate approach even though the systems are strongly 

nonlinear. 

disagreement between approximate and exact solutions can be 

obtained even in the qualitative behavior of the solutions. 

In Part C two cases are treated in which great 



B. COMPARISON OF SOME APPROXIMATE MEAN AND COVARIANCE 

EQUATION SOLUTIONS WITH FOKKER-PLANCK AND MONTE CARLO SOLUTIONS. 

Case 1. First consider Example 1 of Section I1 (Figure 

2.1). This example has a known stationary solution for the 

joint probability density function of xland x2 by means of 

the Fokker-Planck equation (see Reference 1). 

2 where for our case B=1.0 and D=e /2. The constant C is chosen 

to make the integral 

/Jp12(Xl,X,)dXldX2 = 1 
-02 

From(3.l)it can be seen that X1 and X2 are statistically 

independent and that X2 h a s  a gaussian probability density. 

If second moments of the density function(3.l)are compared 

with stationary solutions of the covariance equations(2.10) 

in both cases $,, is equal to zero and is equal to 7 . 
However, the values of $11 do not agree and a plot of $11 

versus e2 is shown in Figure 3.1. 

2 e 

Remember that e2 is the 

amplitude of the white noise power spectral density. 

Note that the agreement between the standard deviations 

rather .than variances would be even better. Also, remember 

that for qll>l the system is saturating heavily. 
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FIG.  3.1. Comparison of stationary solutions for 
for case 1 between Fokker-Planck and the gaussian 
approximation. 

To get a feeling for the validity of the approximate 

mean and covariance approach for the non-stationary solution, 

the results for two different solutions of the mean and 

covariance equations for Example 1 (Equations(2.9)and 

(2.10)) are compared to Monte Carlo solutions using simulated 

gaussian white noise for 100 trials (see Appendix D). The 

results are shown in Figure 3.2 and Figure 3.3. The bands 

around the Monte Carlo solution points represent approximately 

plus and minus one standard deviation for the estimates of 

means and variances as  described in Appendix D. The cases 

selected for Figures 3.2 and 3 . 3  are both well into the non- 

linear range of the system and still the agreement is reasonable. 

Case 2 .  Next a Monte Carlo comparison is made with an 

approximate non-stationary solution of the mean and covariance 
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FXG. 3.2. Comparison w i t h  Monte Carlo r e s u l t s  of t h e  
approximate s o l u t i o n  f o r  v a r i a n c e s  i n  c a s e  1 w i t h  
e=2.0 and z e r o  i n i t i a l  va lues  of means and cova r i ances .  
(Monte Carlo r e s u l t s  shown w i t h  one s t a n d a r d  d e v i a t i o n  
range  about  e s t i m a t e . )  
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FIG. 3 . 3 .  Comparison w i t h  Monte Carlo r e s u l t s  of t h e  
approximate mean and va r i ance  s o l u t i o n s  i n  case 1 w i t h  
e=2.0, m (0)=5.0, and a l l  o t h e r  i n i t i a l  c o n d i t i o n s  zero. 
(Monte C a r l o  r e s u l t s  shown wi th  one s t a n d a r d  d e v i a t i o n  
range  about  e s t i m a t e . )  
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equations (2.15) and(2.16)for Example 2 of Section I1 

(Figure 2.4). The case chosen was for a stationary random 

disturbance x3 produced by passing white noise through the 

low pass filter (Figure 2.4) with Q=.5, e=2.0. The results 

are shown in Figure 3.4. Again the comparison with Monte 

Carlo results is good even though the system was operating 

in a strongly nonlinear regime. 

an estimated plus or minus one standard deviation spread 

The bands again represent 

on the estimates of variances by the Monte Carlo approach. 

-36- 



$11 

3.0 

2.0 

1.0 

0.0 
0 2 4 6 8 10 

t 

t 

FIG. 3.4. Comparison wi th  Monte Carlo r e s u l t s  of t h e  
approximate mean and v a r i a n c e  s o l u t i o n s  i n  case 2 w i th  
e = 2 . 0 ,  n=.5 ,  i n i t i a l  c o n d i t i o n s  on mlI f 2 '  m3' $11' 
$12' $ 2 2 '  $13' $23 zero '  and $ 3 3 ( 0 )  = e n/2  = 1.0 
( s t a t i o n a r y  va lue . )  
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Case 3 .  The third case for comparison is a very 

old and very interesting example constructed in Reference 

10 to allow an exact stationary solution of the Fokker-Planck 

equation to be obtained for a second order system having a 

stable limit cycle. The example is of interest here because 

the exact stationary joint probability density function is 

so obviously nongaussian. 

The system is described by the two first order 

differential equations 

where e is constant and q1 and q2 are independent white noise 

disturbances with 

and 

q1(t)q2(t+r) 0. 

The undisturbed solutions of the system 3.2 are 

characterized by an approach to a stable circular limit 

cycle of radius 1.0 and an unstable singular point at the 

origin on the phase plane. (Figure 3.5) 
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- S t d  b k  
l i m i t  
cycle 

X 

FIG. 3.5. Undisturbed 
solutions (Case 3)  
(from ref. 10) 

k 

FIG.  3.6. Probability 
density (Case 3 )  
(from ref. 10) 

The steady state solution to the Fokker-Planck equation 

is found by transforming to polar coordinates. 

probability density function for x and y (as found in 

Reference 10) is 

The joint 

2 2 2  where r =X +Y and C is a normalization constant. A sketch 

of the joint density function for a specified value of e 

is shown in Figure 3.6. The solution is a "crater-shaped" 

surface which has a minimum at the origin and whose maxima 

form a circle lying above the limit cycle of radius=l.O. 

We shall now see how stationary solutions of the covariance 

equations using the gaussian approximation compare with the 

exact results. The covariance equations are written for the 
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zero mean case (since the stationary solution will obviously 

be zero mean) and the rules for expressing expected values of 

products of gaussian distributed variables discussed in 

Appendix B are used to approximate the required averages 

which occur for the system (3.2;. 

. 2 + e  +xx - - 2OXX - 2+xy - QXX 2 - 4+xy 2 - 2+xx+yy 

. - - 6+xy+xx - 6oxy+yy 
+xy - 2+xy + +xx +YY 

- 

. 
+ e  (3.4) - 2 2 

+yy  - 2+yy + 2oxy - Goyy - 4+xy - 2+xx+yy 

The stationary solution of(3.4)shows that + =O 
XY 

and +xx=+yy as expected. A plot of +,, versus e2 obtained 

from the stationary solution of(3.4)is shown in Figure 3.7 

along with a plot of +xx determined from the exact density 

function(3.3). The agreement is not bad, particularly since 

variances are being compared rather than standard deviations. 

It is also interesting to compare cross sections (say, 

at the x axis) of the exact joint density function with a 

cross section of the approximating joint gaussian density 

function for various values of e shown in Figure 3.8. 

disparity is particularly apparent at small excitation levels. 

It is remarkable that the variances agree as well as they do 

when the gaussian joint density is such a poor approximation. 

C. SOME CASES OF EXTREME DISAGREEMENT WITH KNOWN EXACT 

SOLUTIONS. 

The 

Two cases have been found during this study where even 

the qualitative behavior of solutions to the approximate mean 
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FIG. 3.7. Comparison of Fokker-Planck and approximate 
solutions for $xx or 4yy in case 3. 
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--- Fokker-Planck - Gaussian 

I 1 I 
- 2  0 2 -2  0 2 

2 e2 = .125 e = .25 

T 4  

FIG. 3.8. Comparison of the central cross section of the 
joint probability density from Fokker-Planck with the 
gaussian approximation. 
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and covariance equations is different than the exact solutions. 

The first troublesome situation occurs in nominally stable 

systems with a random parameter or coefficient which has a i 
I -  finite probability of taking on a value which causes the 

t system to become unstable. The second discrepency involves 
, 

systems which have a limited region of stability (in state 

space) about a stable equilibrium point. When such a system 

is randomly excited in a manner which might drive it unstable, 

the covariance equation approach and Fokker-Planck approach 

to the analysis disagree on the nature of the solution. The 

examples chosen to illustrate these two cases were simple 

first order systems because of the ease of obtaining solutions 

by covariance and exact methods. 

Case 1. First consider the simple random parameter 

example introduced in Section I1 (example 3) whose system 

equation is(2.17). In this case, however, no random 

excitation will be considered for simplicity (e=O). The 

system equation is simply 

. 
x = ax (3.5) 

where a is a random, constant coefficient. 

Assuming a and x have a joint gaussian probability 

density.and using the covariance equation approach, as was 

done in Example 3, Section 11, the mean and variance of x are 

found from(2.2U and(2.22)by setting the coefficient e=O. 
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I 

(3 .7)  

Note t h a t  f o r  n e g a t i v e  a t h e  s y s t e m ( 3 . 5 ) i s  s t a b l e .  For 

t h e  problem of a random v a l u e  of a ,  w e  must s t a t e  ou r  know- 

ledge  of a i n  terms of i t s  expected v a l u e  ma and i t s  var iance 

From(3.6) and(3.7) it can  be seen  t h a t  i f  ma is  n e g a t i v e  0 a a  
andd$,,<(rnal, t hen  t h e  mean mx and v a r i a n c e  ox, of t h e  s t a t e  

v a r i a b l e  x approach ze ro  a s  t- r e g a r d l e s s  of t h e  i n i t i a l  

. 
- 

- v a l u e s  m x ( 0 )  and $ x x ( 0 )  

and $xx grow wi thou t  bound i n  magnitude. 

I f ,  however, d$aa > I m  a I both  mx 

Using a c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  approach t o  t h e  

random parameter  problem f o r  t h e  system(3.51, e x a c t  s o l u t i o n s  

can  be  ob ta ined  f o r  any t y p e  of p r o b a b i l i t y  d e n s i t y  of t h e  

parameter  a.  The s o l u t i o n  f o r  a gauss i an  d i s t r i b u t e d  a 

( d e s i g n a t e d  m and $xxg) i s  xg 

The solutions~3.8)and(3.9)show t h a t  t h e  mean and v a r i a n c e  

o f  x grow i n  magnitude wi thout  bound f o r  any non-zero v a l u e s  

of ma and O a a  ($sal of course ,  must always be p o s i t i v e ) .  
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1 

Although t h i s  d i f f e r s  markedly from t h e  approximate 

cova r i ance  so lu t ion (3 .6 )and(3 .91  it is  q u i t e  r easonab le  

s i n c e  t h e  unbounded n a t u r e  of t h e  g a u s s i a n  d i s t r i b u t e d  

parameter  a always g i v e s  a non-zero p r o b a b i l i t y  t h a t  t h e  

system w i l l  be u n s t a b l e .  I t  i s  t h e  unbounded n a t u r e  of 

t h e  g a u s s i a n  d e n s i t y  which makes t h i s  r e s u l t  somewhat 

u n r e a l i s t i c .  

T o  complete t h e  p i c t u r e  an e x a c t  s o l u t i o n  w a s  found 

f o r  a random parameter  a having a bounded uniform o r  " f l a t  

top"  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  (see s k e t c h )  . 

t c m a +  a 

For  t h i s  d e n s i t y  f u n c t i o n  2 /3. The s o l u t i o n s  f o r  t h e  

mean and v a r i a n c e  of x (des igna ted  mxf and I $ x x f )  are 

- 4 4 -  

(3.10) 



( m x ( 0 )  1 2 ( m a + w ) t  2 (ma-w) t 

+ wt [e 

xxf 4 w t  { [e - e  1 - - 4 

2 (ma+w) t 2 (ma-w) t 2 m a t  
I )  + e  - 2 e  1 

( 0 )  2(ma+w)  t 2 (ma-w) t 
[e - e  1 (3.11) 

$xx 
4 w t  + 

- 
where ~ ' 4 3 4 ~ ~ .  

cova r i ance  equa t ion  s o l u t i o n ( 3 . 6 ) a n d ( 3 . 7 ) i n  t h a t  f o r  n e g a t i v e  

m 

This  s o l u t i o n  is  s i m i l a r  i n  n a t u r e  t o  t h e  

t h e r e  is  a t h r e s h o l d  of $ a a < l m a / i T l  f o r  which mxf and a 
approach z e r o  a s  t approaches -. 
The t h r e e  d i f f e r e n t  s o l u t i o n s  d i s c u s s e d  a l l  have t h e  

4xxf 

form 

m = m x ( 0 ) A ( t )  
X 

The t i m e  f u n c t i o n s  A ( t ) ,  B ( t ) ,  and C ( t )  a r e  p l o t t e d  f o r  

=-1 and v a r i o u s  v a l u e s  $ i n  F i g u r e  3.9. For  v a l u e s  
ma aa 
of $aa(,4 agreement between t h e  approximate s o l u t i o n  and 

t h e  e x a c t  f l a t  d e n s i t y  s o l u t i o n  is  q u i t e  good. 

ment between t h e  approximate and e x a c t  gauss i an  i s  even 

good f o r  $aa(.4 i n  t h e  i n t e r v a l  O ~ t 5 4  which was p l o t t e d ,  b u t  

f o r  l a r g e r  t t h e  e x a c t  gauss i an  s o l u t i o n  beg ins  t o  grow. 

For gaa=.8 bo th  e x a c t  s o l u t i o n s  are growing s i g n i f i c a n t l y  

w h i l e  t h e  approximate s o l u t i o n  i s  s t i l l  decaying. 

+aa 
t o  grow ( b u t  n o t  n e a r l y  f a s t  enough) and t h e  B p a r t  s t i l l  

decays .  

- 
The agree-  

- -  

A t  

= 1 . 2  t h e  A and C p a r t s  of t h e  approximate s o l u t i o n  begin  

I t  seems p a r a d o x i c a l ,  b u t  t h e  approximate method works 
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b e s t  i n  s i m u l a t i n g  s i t u a t i o n s  where t h e  p r o b a b i l i t y  d e n s i t y  

f u n c t i o n  of t h e  parameter  i s  bounded (even though it i s  

based on a gauss i an  approximation) and when t h e  s t a n d a r d  

d e v i a t i o n  of t h e  parameter  i s  s m a l l  compared t o  t h e  expected 

v a l u e .  Agreement wi th  t h e  unbounded, gauss i an  d i s t r i b u t e d  

parameter  s o l u t i o n  is  good only f o r  s h o r t  t i m e s  even w i t h  

small s t a n d a r d  d e v i a t i o n  of t h e  parameter .  

Case 2 .  Now c o n s i d e r  another  s imple f i r s t  o r d e r  

sys t e m .  

x = ax - s g n ( x )  + e q ( t )  (3.13) 

where q ( t ) q ( t + . r )  = & ( T I ,  a>O, and t h e  f u n c t i o n  s g n ( x )  is 

d e f i n e d  by 

s g n ( x )  = +1 i f  x>O 

= -1 i f  x<O 

The und i s tu rbed  system(3.13)has a s t a b l e  e q u i l i b r i u m  

For i n i t i a l  1 p o i n t  a t  x=O f o r  i n i t i a l  c o n d i t i o n s  (xol<;ii  . 
I c o n d i t i o n s  ( x  I > -  , x grows i n d e f i n i t e l y .  Th i s  problem a r i s e s  

i n  au tomat i c  s t a b i l i z a t i o n  of u n s t a b l e  systems (Reference 11). 
o a  
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If the zero mean case is treated, the variance 

equation based on a gaussian approximation beconfes 

(3.14) 

Of particular interest are the stationary or equilibrium 

solutions of 3.14. 

2 1  (3.15) e <- 4na 
2 2 2 

$ = [1/4~a 3 [1-2~ae *J1-4 ae 3 ,  

The smaller solution (-sign) is a stable equilibrium and the 

larger (+sign) is unstable. If $(O) is below the unstable 

equilibrium, 0 will approach the stable equilibrium point 

as t-. If $(O) is above the unstable equilibrium point 

will grow without bound. 

points and $ grows without bound regardless of the initial 

condition. 

2 1  If e >r there are no equilibrium Ta 

The nature of the solution just described seems to make 

sense physically, but the Fokker-Planck solution to this 

problem shows that no stationary solution exists under any 

condition, (see Reference 11). Here, as in Case 1 above, 

it again appears as if the covariance equation approach is 

simulating more accurately the case of a disturbance with a 

bounded probability density. 
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D. REMARKS ON THE SUCCESSFUL APPLICATION OF THE APPROXIMATE 

MEAN AND COVARIANCE EQUATIONS TO NONLINEAR SYSTEMS. 

Of course, the examination of a few simple examples 

can give no valid general conclusions about the accuracy 

of the gaussian approximation approach to solving the mean 

and covariance equations. From these and other examples, 

however, it appears that if the expected joint probability 

density function for the problem under consideration is at 

all similar to a gaussian density (i.e., it has a single 

maximum and diminishes for large arguments at least 

exponentially) reasonably good results can be expected. 

Situations requiring extreme caution are those involving 

nominally stable systems which have a finite probability 

of becoming unstable either due to a random parameter or 

random excitation. 
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IV. CONCLUSION 

A method has been presented for computing approximate 

means and covariances of the state variables of nonlinear, 

nonstationary, dynamic systems subjected to white noise 

disturbances. 

mation of the joint probability density function of the system 

state variables allowing the formulation of a set of ordinary 

differential equations which govern the evolution in time 

of the means and covariances of the system state variables. 

This technique is applicable to a large class of nonlinear, 

time-varying problems and is well suited for digital 

computation. 

The technique is based on a gaussian approxi- 

The method is approximate, however, and the nature of 

the approximation is not well understood. The several 

examples for which comparisons with Fokker-Planck and Monte 

Carlo solutions were made, showed that the approximate method 

produced quite reasonable results except for certain problems 

involving nominally or conditionally stable systems which had 

finite probabilities of becoming unstable. 

not limited to stable systems, but systems which can be 

considered neither stable nor unstable appear to cause 

difficulties. On the basis of the few cases examined, no 

general conclusions on accuracy and applicability of the 

method could be made, of course. 

The approach is 



The mean and covariance equation approach, while it has 

many advantages over power spectral density approaches, has 

one distinct disadvantage in that it gives no direct method 

of evaluating the frequency content or auto-correlation of 

a state variable. 

however, the method used by Rice (Reference 12) for finding 

the expected frequency of cfrossing of a given threshhold level 

can easily be adapted for use with the mean and covariance 

equations. 

For stationary or quasi-stationary problems, 

In spite of its shortcomings, use of the approximate 

mean and covariance equation for treatment of randomly disturbed 

dynamic systems can, with judicious application, provide 

a practical means of computation for a much larger class of 

problems than other current methods. 
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APPENDIX A 

DEVELOPMENT OF THE MEAN AND COVARIANCE EQUATIONS 

For simplicity the mean and covariance equations will 

be developed for only a single white noise input, as the 

extention to several independent inputs is straight forward. 

Consider a dynamic system described by 

. 
xi = fi(X1, ..., x ,t) n + eiq(t), i=l,. . . ,n 

where the coefficients ei can be functions of time and q(t) 

is zero mean, stationary "white" noise with an auto-correlation 

function 

Define the means 

m = x  i i 

and the covariances 

(A-2) 

(A-3 1 

(A -4 )  

The rate of change of the means can be written 



mi ( t + A t )  -mi (t) 

A t  

Xi ( t + A t )  -Xi ( t ) ,  

A t  
m = l i m  = l i m  ( A - 5 )  

A t + O  i A t 4  

From t h e  d i f f e r e n t i a l  equa t ions  (1) 

4 

Taking t h e  expec ted  v a l u e  of bo th  sides of(A-6)and 

s u b s t i t u t i n g  i n t o  (A-5) 

( A - 7 )  

. 
m = f i ( x l l . . . l ~  I t)  i n (A-8 1 

To o b t a i n  an  e x p r e s s i o n  f o r  t h e  r a t e  of change of t h e  

c o v a r i a n c e s  I (A-4) can be w r i t t e n  

and from (A-8) and (A-9) 

(A-9)  

d -  
= - ( x . x . )  - mjfi(ll".'x ' t) - m.f (xl  ,... I x  t) 

@ij d t  1 J n 1 1  n' 

(A-10) 
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By definition the first term on the right-hand side of(A-10) 

is 

Using the results of(A-G)in(A-il) 

d -  -(x.x * )  dt 1 3 

First consider term @ in(A-12). 
the mean terrnacan be rewritten as 

From the theorem of 

In the limit as At+O,(A-l3)becomes 

(A-13) 

(A-14)  

where x (t)q(t) is just the covariance of xi and q. But xi 
i 

can depend only on the past history of q ( not its present 

value) and since q is "white" noise (i.e., the present value 
- 

is not correlated with any past value) we can expect xiq 
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and hence t h e  c o n t r i b u t i o n  of t e r m a t o  be zero .  

arguments can be used on terms@, @and @ t o  show t h a t  they  

S i m i l a r  

should  also be ze ro  i n  t h e  l i m i t  a s  A t 4 .  

Noting t h a t  

term @ in(A-12) can be eva lua ted .  

(A-15) 

(A-16)  

I n  t h e  l i m i t  as At+-0 t e r m a b e c o m e s  ei(  t) e .  ( t)  and(A-12) 

becomes 
3 

d -  - ( x . x . )  = x . f  + x . f  + e . e  
d t  1 3 1 1  3 i  1 1  

(A-17)  

The e x p r e s s i o n  f o r  r a t e  of  change of cova r i ance  can 

be o b t a i n e d  from(A-17) and(A-10) 

- - (xi-m f .  + (x.-m f .  + e . e  
4 i j  i) 3 3 2 = 1 1  

(A-18)  

The r e s u l t s  f o r  more than one independent  w h i t e  no i se  

i n p u t  are  g iven  i n  equat ion(2 .2)  and (2.3)of S e c t i o n  11. 
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APPENDIX B 

USEFUL RELATIONS RESULTING FROM THE GAUSSIAN APPROXIMATION 

In this appendix several results are presented which 

are of great value in the practical application of the mean 

and covariance equations to nonlinear systems by means 

of the gaussian approximation. The results are not new 

but just presented in a form which is convenient for this 

application. 

Nonlinear functions of a single variable. 

If a dynamic system contains nonlinear functions of a 

single state variable g(xi), the mean and covariance equations 

for that system will contain terms of the type 'Q(xiJ and 
7x -m )g(xi). 

j j  
The first simplifying result of the gaussian approximation 

is 

This reduces the two-dimensional average to a one-dimensional 

average.which is the same for any j. (Note: Care should be 

taken to avoid allowing ,$ii to become zero in machine 

computations. If an initial value ,$ii=O is required for a 

problem, ,$ii should be set initially to some very small positive 

value instead.) 



I. 

Using t h e  result(B-11, on ly  two averages  must be computed 
- 

f o r  each f u n c t i o n  g ( x i )  occur ing  i n  t h e  system: 
(xi-m. ) 2 

1 
00 - - 

9 ( X i )  = ( 2 0 i i )  r g  (xi) e 24ii dxi (B-2 )  
-1 /2  

-00 

The averages  (B-2) and(B-3) are f u n c t i o n s  only  of mi and 

4 ii 
b u t  o f t e n  must be done numer ica l ly .  

t h i s  purpose are  p resen ted  i n  Appendix C.  

. (B-2)and(B-3) can o c c a s i o n a l l y  be e v a l u a t e d  a n a l y t i c a l l y  

FORTRAN subprograms f o r  

Some s p e c i a l  f u n c t i o n s  of more than  one v a r i a b l e .  

Sometimes because of t h e  p a r t i c u l a r  se t  of s t a t e  v a r i a b l e s  

chosen,  e s p e c i a l l y  i n  au tomat ic  c o n t r o l  sys tems,  t h e  i n p u t  z 

t o  a n o n l i n e a r  f u n c t i o n  of a s i n g l e  v a r i a b l e  g ( z )  i s  a l i n e a r  

combinat ion of t h e  s t a t e  v a r i a b l e s  

n 
z = 1 a . x  

i=l i i  

t h u s  making g ( z )  a degenera te  f u n c t i o n  of s e v e r a l  v a r i a b l e s .  

The u s e r  i s  t h e n  f aced  w i t h  e v a l u a t i n g  averages  of t h e  form 

(x  . -m.  g (z) . 
o b t a i n e d :  

Applying (B-l) t h e  fo l lowing  h e l p f u l  r e s u l t  i s  
3 3 ) .  
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__. 

The averages  g ( z )  and ( z - z ) g ( z )  c a n  be ob ta ined  from(B-2) 
n n n  

and (B-3) n o t i n g  t h a t  ;=I aimi and (2-2) - 2  = 1 1 a n a .  $ 
1 J i j ’  i=l i=l j=1 

Another t ype  of special  non l inea r  f u n c t i o n  of more than  

one v a r i a b l e  which o f t e n  occurs  i s  t h e  product  of two or more 

s t a t e  v a r i a b l e s .  R e s u l t s  are g iven  f o r  t h e  averages  r e q u i r e d  

w i t h  products  of t w o  v a r i a b l e s ,  x ix j ,  and of three v a r i a b l e s  

x . x . x  The r e s u l t s  are ob ta ined  us ing  t h e  r e l a t i o n s  f o r  

h i g h e r  moments of a j o i n t  gauss i an  d e n s i t y  f u n c t i o n .  Two 

v a r i a b l e  p roduc t ,  x . x  
1 j *  

1 J k’ 

- 
x . x  = + m . m  
1 j 4 i j  1 1  

(xk-mk)xixj = mi$k j  + r n j O k i  

Three v a r i a b l e  p roduc t ,  xixjxk; 

x i j k  x x = mimjmk + mi$ jk  + m j $ i k  + m k + i j  

(xQ-m x . x . x  = m . m . +  + m m Q + m j m k + e i  ! L ) l ] k  1 J kk i k a j  

(B-7)  

Genera l  f u n c t i o n s  of more than one v a r i a b l e .  

F i r s t  c o n s i d e r  a system c o n t a i n i n g  g e n e r a l  non l inea r  
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functions of two variables of the form g(x1,x2). The mean 

and covariance equations require the evaluation of averages 

of the type g(x1’x2) and (x .-m.)g(x,,x,) . 
3 3  

A result analogous 

I 
to(B-1) can be obtained with the gaussian assumption to 

I reduce the second averages from several three-dimensional 

integrals to two two-dimensional integrals. 

where kl and k2 are solutions to the linear equations 

(B-10) 

The form o f ( B - 9 )  and(B-10) can be directly extended to 

functions of three or more variables if required. The 

averages on the right-hand side as well as g(xl,x2)must be 

obtained by integrating with the two-dimensional joint 

gaussian density function. A FORTRAN subprogram for 

evaluating these averages with a two-dimensional numerical 

integration is given in Appendix C. (Note: Just as in the 

use o f ( B - l ) ,  care must be taken to assure 

911 912 

921 922 
f 0  
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in using(B-9)on a digital computer. 

and $ 2 2  should be inserted instead of zeros when zero 

initial conditions are required.) 

Small values for $11 
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APPENDIX C 

FORTRAN SUBROUTINES FOR COMPUTATION OF 

AVERAGES OF NONLINEAR FUNCTIONS 

In this Appendix subprograms are presented which 

compute the averages required by the mean and covariance 

equations of systems having three different types of one- 

dimensional nonlinearities and one two-dimensional nonlinearity. 

All the subprograms are written in IBM 1620 FORTRAN I1 but 

are written so that they will run unaltered in any standard 

FORTRAN IV system. 

run in a number of cases. 

of this Appendix. 

These programs have all been successfully 

Program listings are at the end 

This subroutine computes by numerical integration the 

ave r ages 

GAV = g, (x,) and XGAV = (x,-m,)g, (x2) 

based on a gaussian probability density function where 
- x 
gl(xi) is entered through a function subprogram Gl(ARG,INDEX) 

written by the user for his particular one-dimensional 

nonlinearities. Gl(ARG,INDEX) defines the value of a function 

= m. . =  VMEAN and (xi-mif2 = Oii = PHI. The function 
i 1 



for a given argument (ARG) and the INDEX allows more than one 

function to be defined by Gl(ARG,INDEX) by branching on the 

value of INDEX supplied by the main program. This latter 

artifice (INDEX) can be avoided in FORTRAN IV if desired 

by allowing G1 to replace INDEX as an argument of AVE1. 

SD is the number of standard deviations to either 

side of the mean of the gaussian density over which the 

integration takes place (SD = 3 or 4 is usually sufficient) 

and NPTS is the number of points used to define the functions 

in the interval specified by SD. The integration is 

effectively trapezoidal rule. 

SUBROUTINE AVE2(Fl,F2,F12,VMl,VM2,INDEX,GAV,XlG,X2G,SD,NPTS) 

This subprogram is the same as AVE1 except that it 

computes the required averages for a two-dimensional non- 

linear function, 

X1G = (xl-ml) g2 (xl,x2) 

based on a two-dimensional joint gaussian probability density 

function where ml = VM1, m2 = VM2, $11 = F1, 

$,, = F2. 

G2(ARGl,ARG2,INDEX) is written by the user and INDEX has 

= F12, and 

Just as in AVEl the function subprogram 

the same use as in G1. 

SD and NPTS have basically the same meaning as in AVE1. 
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Before the two-dimensional integration is performed, a 

change of variables is made to the principal axes of the 

joint gaussian density so that the cut-off points defined 

by SD have more meaning. 

SUBROUTINE APRO(NU,X,Y ,VMEAN,PHI ,XBAR,FXBAR) 

This subroutine, like AVEl, computes the averages 

XBAR = g(xi) and FXBAR = (xi-mi) g (x. ) 1 

based on a one-dimensional gaussian probability density 

function with mean mi = VMEAN and variance $ii = PHI. 

function g(x.) must be represented by straight line segments 

connecting the points X(I) , Y ( I )  , I=l,NU. 

The 

1 

X 

a - 
2 pt. no. 1 

The points must be numbered left to right. 

is assumed to extend to the left indefinitely using the 

extension of the line segment between the first two points and 

The function g(x) 
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to the right using an extension of the line segment through 

the last two points. Discontinuities (such as at points 4 

and 5 in the sketch above) are permitted, but the function 

must be single valued, of course. 

supplied by the calling program and there is no limit on their 

dimension. 

The arrays X and Y are 

The integrations are based on closed form evaluations 

for each line segment. 

SUBROUTINE POLY(NU,A,VMEAN,PHI,XBAR,FXBAR) 

This subroutine performs the same task as APRO except 

that the function is represented by a polynomial of degree 

NU (i.e., NU + 1 terms) of the form 

The array A of polynomial coefficients is supplied by the 

calling program and the degree NU<14. 

FXBAR all have the same meaning as in APRO. 

VMEAN, PHI, XBAR, - 

The integration is achieved with closed form formulas 

based on the higher moments of gaussian density functions. 
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SURROUTINE A V E 2 ( F l * F 2 * F 1 2 * V M l r V M 2 ~ I N D E X ~ G A V * X l G ~ X 2 G * S D ~ N P ~ S )  
IF~F12+Fl2-~01*F1*F2) l r l r2  

I 1 V L l = F l  
I V L P t F ?  

R 1 = 0 . 0  
GO TO 20 

7 A = o S * ( F l + F P l  
B=SQRT( ( F l - F P ) * ( F l ~ F 2 ~ / 4 ~ O + F ~ ? ~ F ~ ~ ~  
€3 X C=A+B 
SMALL=A-R 

i 
I F ( F ? - F 1 ) 3 + 3 * 4  

3 V L l = f l I C  

I GO TO 5 
4 V L P = R l G  

I VL!=SMALL 

5 R l = ( V L I - F l  )/F12 
2 0  V L l + S Q R T I V L I )  

V L 2 = S O R T t V L 2 )  
f l 1 ~ 1 o ~ ~ S Q R T ~ l o O + R l * R 1 ~  
T E l = R I + T 1 1  
CAV= 0 0 
X I C - 0 . 0  
X2G=O 0 
P T S = NPT S 
H=2.*SD/(PTS-! 0 1 
HH=H*H 
DO 1 0  I=I*NPTS 
V S = I - l  
X l l = V I * H - S D  
DO 1 0  J = l r N P T S  
V J r J - 1  
X I P t V J * H - S D  
ARC 1 =T 1 1 *VL 1 * X I  1 - T 2  1 *VL2*X 12+VM 1 
ARG2=T21*VL1*XIl+Tl1*VL2*XI?+VM2 
D U M ~ H H * G 2 ~ A R G l ~ A R C ~ ~ 1 N b E X ) + E X P ( - . S + ( X t r + X I l + X I ~ * X l 2 ~ ~  
CAV=GAV+DUM 
X 1 C = X l  C+ ( ARG!-VMI) *DUM 

1 0  X ~ G P X P G + ~ A R G ~ - V M ~ ) + D U M  
CAV=GAV*ol59!!35 
X I  G = X l  G*o 1 5 9 1 5 5  
X2G=X2C*o 159155 
RE TlJRN 
EN0 

VLPmSMALL 
I 
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SUBROUTINE P O L Y ( N U * A * V M E A N * P H I * X B A R , F X B A R )  
D I M E N S I O N  A(l)rO(lS) 
N=NU+I  
STAD=SORt(PH!  1 
I F  (VMEAN-0.0) 1 5 r S * 1 5  

I 5 00 10 I = l r Y  
i o  B ( I ) = A ( I )  

GO TO 4 0  
15 DO 35 L = 1 * N  

R (L  1 =O. 0 
R I N = I o O  
VL=L- 1 
DO 35 K = L * N  

IF (K-L )  3 0 r 2 5 ~ 3 0  

GO TO 35 

I 
I 

I VK=K- 1 

' 
?F; R ( L ) = A ( K )  

20 R ( L ) = R ( L ) + A ( K ) + ( V M E A N + + (  K- L ) ) * R r N  

~ 

3 5  R!N=R!N*(VK+lo)/(VK+lo~VL) 
4 0  XBAR=OoO 

VYO=1.0 
00 55 K O = l r N o 2  
LO=KO- I 
VLOtLO 
UMOrKO-2 
VMO=UMO+VMO 
fF(K0-1) 50*45050  

VMOtloO 
GO TO 55 

4 5  XRAX=8 (KO 1 

50 XBAX=B(KO)+(SfAD**VLO)*VMO 
S 5  XBAR=XBAR+XBAX 

FXRAR=O 0 
VMO-I  00 
DO 60 K E = 2 * N * 2  
VKE=KF 

UMO=MO 
VMO=UMO*VMO 
F X R A X = R ( Y E ) + ( S T A D + + V K E ) * V M ~  

RETURN 
END 

MO=KE-1 

60 FXRAR=FXBAR+FXBAX 
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APPENDIX D 

THE MONTE CARLO METHOD USED FOR 

COMPARISONS WITH THE APPROXIMATE SOLUTIONS 

The Monte Carlo results used for comparisons in Section 

I11 were obtained by a very straight forward procedure. The 

system differential equations were integrated (on a digital 

computer) a large number of times (typically 100) with 

appropriate initial conditions and with a simulated "white 

noise" input obtained from a random number subroutine. 

Samples of all the state variables were accumulated in a 

manner to produce finite sample estimates of means and 

covariances at specified time intervals. 

To produce "white noise" inputs and random initial 

conditions a random number generator based on the method of 

Reference 13 was used to produce a nearly gaussian distributed 

set of random numbers with a mean of zero, a standard deviation 

of 1.0, and a maximum deviation of 6.0. Tests on the number 

sequences showed successive samples to have very low correlation. 

The "white noise" was simulated with a random function of the 

type shown in the sketch. 



I 

- 
-- - - 

---- 
t - - - -  

- - 

- 
I 1  T 1 1  T t 1 . r  

-? 0 -T/2 T/2  O T  

t a t  beginning  of t i n  center of t a t  end of i n t e r v a l  
i n t e r v a l  i n t e r v a l  

so t h a t  such a f u n c t i o n  is n o t  s t r i c t l y  s t a t i o n a r y .  I f  T 

i s  made v e r y  s m a l l  compared t o  t h e  " t i m e  c o n s t a n t s "  i n  t h e  

system and t h e  ampl i tude  of G ( t )  i s  normalized by u s i n g  a 

m u l t i p l y i n g  f a c t o r  t o  keep t h e  area of t h e  a u t o - c o r r e l a t i o n  

f u n c t i o n  "pu l se"  equa l  t o  1 . 0 ,  t h e n  
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The estimate % used to obtain the mean mx of a 
variable x from N samples at a particular time is 

where x (i) is the ith sample of x. 

estimate 

The variance of this 

where $xx is the variance of x. 

The estimate VN for the covariance $ = (x-mx) (y-m ) 
XY Y 

based on N samples was 

The variance of VN depends on higher moments of x and y, 

but if it is assumed that x and y are gaussian for convenience 

$ 1  (D-4) 1 2  
N-1 XY + 4xx yy Var[VN] = -($ 

To get the plus-or-minus, one standard deviation bands on 

the means and covariances in the figures of Section 111, the 

results of (D-3) were used in(D-2) and(D-4). Although the gaussian 

assumption used in(D-4)was violated, it was felt that the results 
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would still be a good indication of the reliability of the 

Monte Carlo results. 

Relative Computation Effort Between Monte Carlo and Covariance 

Equations. 

One might ask whether the Monte Carlo approach could be 

used rather than approximate mean and covariance equation 

approach for the solution of problems involving random 

disturbances in nonlinear systems. 

is appealing because it is simple, easy to implement, and 

requires virtually no assumptions to be made about the nature 

of the system or its probability density function. It 

is flexible in the type of statistical data that can be 

obtained since one could estimate probability density 

functions from accumulated frequency distributions almost 

as easily as first and second moments. 

The Monte Carlo approach 

A simple analysis will yield a measure of the relative 

computation times required for the approximate covariance 

equation approach and the Monte Carlo approach. Let n 

be the number of first order differential equations which 

describe the dynamic system. Then the total number of mean 

and covariance equations will be n(n+3)/2. If D is the 

average ''factor of difficulty" of the mean and covariance 

equations over the system equations and IC is the integration 

interval required for the mean and covariance equations, 

the computation time for the covariance equation method can 

be writ ten 

n(n+3) D 1-  
IC 2 Tc = C( 
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where C is a proportionality constant. 

the number of samples (or solutions) required by the Monte 

Carlo approach and Im is the integration interval size 

required for the Monte Carlo approach 

Likewise, if N is 

nN TM = c- 
Im 

The ratio 

n+3 D Im 
Tc/Tm = (-1 (-1 * IC 

To get an idea about N, one can find from(D-4) (an 

approximation) that the ratio of standard deviation in the 

estimate of ox, to ox, is about 0.14 for N=100. 

that in half N would have to go to 400.) 

is adequate for purposes of comparison. 

(To cut 

Assume that N=100 

The average factor of difficulty D might typically be 

from 2 to 4. 

might require a smaller interval size to properly simulate 

the "white noise". 

On the other hand, the Monte Carlo approach 

For purposes of comparison assume 

With these assumptions 

It appears from this that the covariance equation approach has 
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q u i t e  an  advantage f o r  l o w  o rde r  systems (n<10-20) b u t  t h a t  

f o r  ve ry  h igh  o r d e r  systems (n>50-100) - t h e  Monte Carlo Approach 

i s  more economical. 
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