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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

M_4ORANDUM 12- 29- 58A

EFFECTS OF LARGE WING-TIP MASSES ON OSCILLATORY

STABILITY OF WING BENDING COUPLED

WITH AIRPLANE PITCH

By Donald T. Higdon

SUMMARY

An examination of oscillatory stability for a straight-winged airplane

with large concentrated wing-tip masses was made using wing-bending and

airplane-pitching degrees of freedom and considering only quasi-steady

aerodynamic forces. It was found that instability caused by coupling of

airplane pitching and wing bending occurred for large ratios of effective

wing-tip mass to total airplane mass and for coupled wing-bending frequen-

cies near or below the uncoupled pitching frequency. Boundaries for this

instability are given in terms of two quantities: (i) the ratio of effec-

tive tip mass to airplane mass, which can be estimated, and (2) the ratio

of the coupled bending frequency to the uncoupled pitch frequency, which

can be measured in flight. These boundaries are presented for various

values of several airplane parameters.

INTRODUCTION

The placement of fuel or armament in wing-tip pods is a practice which

has been in existence for some time on fighter-type aircraft, and there are

several ways in which large concentrated masses might appear at the wing

tips of future aircraft. There is the possibility that in nuclear powered

aircraft, where the personnel and power plant must be well separated, this

technique will be employed. Long range aircraft with supersonic dash capa-

bility might carry disposable wing-tip sections with large fuel tanks.

Also the mounting of engines at the wing tips is proposed for certain air-

plane types such as vertical take-off airplanes.

The natural wing-bending frequency of an airplane might be lowered by

the presence of large wing-tip masses to the extent that it is near or

even below the natural pitching frequency of the airplane under certain

flight conditions. Under these conditions the effects of coupling between

pitching and wing bending are of concern, since the damping ratios of

structural modes are inherently low and any unfavorable coupling might

cause oscillatory instability in coupled wing bending. It is the purpose

of this study to establish conditions under which such wing-bending

instability is likely to occur.
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The analysis is madeby meansof equations of motion with airplane
pitch and fundamental wing-bending degrees of freedom. Unsteady aerody-
namics, that is, the effect of frequency on aerodynamic coefficients, and
structural dampingare neglected.

NOTATION

D

M

M8

Q1

Q2

S

V

Y_o

yl

a o

Y8

d
derivative with respect to real time,

airplane pitching moment of inertia about the center of gravity,

slug ft 2

total airplane mass, slugs

rate of change of pitching moment with pitch angle, e,

-2 ZOxacd_, ft-lb/radian

rate of change of pitching moment with pitch velocity, e,

ft-lb sec/radian

generalized aerodynamic pitching mome]it, ft-lb

generalized aerodynamic wing-bending 'orce_ ib

wing area, sq ft

forward velocity of airplane, ft/sec

rate of change with the angle _ of ihe generalized wing-bending

force due to an angle-of-attack dislribution _ ao(_) ,

22 Zaoaodg , lb/radian

Ya o

Z8

rate of change of generalized wing-bending force with pitch

angle O_ 2 Zoaod_, ib/radian

Ye

Ze



Za o

Z !

a o

Z e

a(_)

ao( )

a(0)

c

e

i

k 0

_a

_ a o

_8

rate of change with the angle Y-- of the generalized vertical
V

force due to an angle-of-attack distribution _ ao(_) ,

2 Zaod_, ib/radian

Za o

Ze

rate of change of generalized vertical force or lift with pitch

angle 0, 2 _0d_, ib/radian

spanwise bending deflection as a function of _ referenced to

node and normalized on cantilever wing-tip deflection y

spanwise bending deflection as a function of _ referenced to

wing root and nomalized on cantilever wing-tip deflection y,

a(_)-a(0)

value of a(_) at _ = 0 or the wing root

mean aerodynamic chord

Naperian base

4=7

wsr

reduced pitching frequency parameter, V

rate of change with the angle V of the spanwise aerodynamic

load distribution due to an angle-of-attack distribution

#--a(_) ib/radian
V

rate of change with the angle _ of the spanwise aerodynamic

load distribution due to an angle-of-attack distribution

V ao(n)' Zb/radian

rate of change with e of the spanwise aerodynamic load distribu-

tion due to a pitch angle 8, ib/radian
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m

m !

mg

!

mg

P

q

r

u

U !

x

Xac

x a

Xp

_0 1
effective wing-tip mass (both tips)_ 2 _aod_, slugs

m

M

generalized wing-bending mass, 2 _a2d_ slugs

mg
M

d
derivative with respect to dimensiorD_ess time_

dynamic pressure_ ib/sq ft

pitching radius of gyration _ _ ft

spanwise distribution of static mass moment about airplane center

of gravity_ slug ft

real time, see

static margin_ _ , ft

u

r

longitudinal distance from airplane c-enter of gravity; positive
forward, ft

wing-fuselage local aerodynamic centcr relative to airplane

center of gravity, positive forwarc.

wing local aerodynamic center relati_e to airplane center of

gravity; positive forward

Xa

r

longitudinal tip mass center of gravity relative to airplane

center of gravity_ positive forwar<_ ft

r
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y wing-tip deflection relative to wing root (cantilever), positive

down, ft

_B damping ratio of coupled wing-bending mode

_y damping ratio of uncoupled, free-free, wing-bending mode

_8 damping ratio of uncoupled pitching mode

dimensionless spanwise station

8 pitch coordinate, positive nose up_ radian

e_ component of pitch in phase with bending velocity during undamped
oscillation

spanwise mass distribution of airplane, slugs

T dimensionless time_ _et

WB

_B undamped natural frequency of coupled wing-bending mode,

radians/sec

_y undamped natural frequency of uncoupled, free-free, wing-bending
mode, radians/sec

w e undamped natural frequency of uncoupled pitching mod% J-_ ,

radians/sec

Dots over symbols are used to indicate differentiation with respect

to real time.

DERIVATION OF EQUATIONS OF MOTION

Selection of Degrees of Freedom

A system with two degrees of freedom is considered for the purpose

of studying oscillatory instability caused by coupling of wing bending

with airplane-pitching motion. The selection of the two degrees of free-

dom was based on the results of some four degree of freedom studies on

specific example airplanes; where the degrees of freedom were airplane

pitch, airplane vertical translation, cantilever wing bending, and canti-

lever wing torsion. The examples were similar in character to the type

of airplane considered in the present analysis. The development of the
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equations was by the method shown in appendi_ C of reference I. In these

studies conditions of undamped oscillation in modes which were primarily

wing bending were found and the modes of oscillation were examined.

Two important facts were noticed:

I. The relation between vertical translation and cantilever

wing bending was nearly the same as wouDd be expected for the

airplane in an uncoupled, free-free, wing fundamental bending

mode (in vacuo).

2. The role of wing torsion in reducing the generalized

coupled mode damping force to zero was found to be small in

comparison with the role of pitch_ and instability could be

achieved without the inclusion of the torsion degree of freedom

under conditions not greatly different than with it.

The above observations indicated that the essential mechanism involved

in this oscillatory instability could be pre_erved in a system of only two

degrees of freedom, airplane pitch and a win_-bending degree of freedom

based on the uncoupled, free-free_ wing firs i-bending mode in the absence

of aerodynamic forces. Such a simplification is of great help in the

examination of the general nature of the ins%ability.

The Generalized Wing-Bending Coordinate

Before the generalized bending coordinate can be established_ a brief

look at the nature of the fundamental_ uncoui_ed_ free-free_ wing-bending

mode (in vacuo) is necessary. Consider an airplane with large concentrated

wing-tip masses oscillating in such a mode. If the generalized wing-

bending coordinate at any time is called y_ and the corresponding mode

shape is called a(q), the vertical position of the wing relative to the

node at any span station _ is ya(_) (fig. i). The mode shape a(_) may

be considered to be made up of two parts

a(_) : ao(_) +a(O)

where ao(_) is simply the mode shape referei_ced to the wing root rather

than the node (fig. 2). With this definitio_ and with ao(_) normalized

to 1.0 at the wing tip, it is evident that ir is the cantilever wing-tip

deflection (see fig. I). The quantity a(O) can be determined from the

equilibrium requirement for the freely oscillating system in the absence

of aerodynamic forces

_(_) d7 ya(9) d_ = _ _'h)a(_)dh = 0
i i
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where _(_) is the spanwise mass distribution including the concentrated

masses. Because the mode is symmetric the integration need only be over

the semispan. Substituting a(_) = ao(_) + a(O) and dividing the equation

by _ yield

2 a_ d_ = 2 ao_ d_+2a(O) _ dB = 0

or

fo 1
2 ao_ d_+ a(O)M = 0

where M is the mass of the airplane. Then

where

a(D) = ao(B ) _ mM

fo i
m = 2 ao_ dD

(i)

It should be noticed that if the distributed mass in the wings were con-

sidered negligible, m would simply be the sum of both concentrated wing-

tip masses. (Note in fig. 2 that ao(O) = O, excluding the fuselage

mass, and ao(l ) = i.) Now if ao(D) is assumed to remain unchanged,

a(_) changes with m/M only as shown in equation (i), greatly simplify-

ing the use of a free-free mode as a degree of freedom. Fortunately the

present analysis is fairly insensitive to small changes in ao(_) , and

this assumption has little effect on the results. The reason for this
will become evident later.

The generalized wing-bending coordinate, then, will be represented

by the cantilever wing-tip deflection y, where a value of y implies a

spanwise deflection relative to the node of y (ao(q) - m/M).

Kinetic Energy

The kinetic energy of the two degree of freedom system is

(i/2)/v2dM where v is the local velocity in space at the location

of the differential mass dM and the integration is made over the whole

airplane. Small angles being assumed, the local velocity may be expressed

in terms of the two coordinates and can be expressed as

=
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where x is the longitudinal distance from the airplane center of gravity,

positive forward. Then

• ]= _ @2x2-20xya(q)+_a(q) 2 dM

airplane

: 7 _21 - 2yO sad n + _ _aed_

where I is total pitching moment of inert:__a about the airplane center

of gravity and s(_) is the spanwise distribution of static mass moment

fo foabout the airplane center of gravity. Note that sa d_ = saod _

since s d_ = O. Thus, letting

oXSaod_

Xp -- i

_o _a°d_

and remembering that

1
mg = 2 a2_ d_

m = 2 ao_ d_

KE = i _21 -yexpm + _ y2mg

When the distributed mass of the wing is considered negligible, Xp
simply becomes the longitudinal distance between the center of gravity

of the concentrated wing-tip mass and the a[rp!ane center of gravity.

Potential Energ{

The only potential energy in the systen is the strain energy in the

wing. Since ao(_) is held constant the strain energy is a function of

y only and can be written

PE i
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where Ky is an effective spring constant. In terms of the uncoupled,
free-free, natural bending frequency _ , Ky can be written as mg_y e.

The bending shape is very critical in t_e determination of Ky; but, as

will be seen, this problem is bypassed in the method to be presented.

Lagrange's Equations

The two simultaneous equations of motion are obtained from Lagrange's

equation by substituting the expressions for kinetic and potential energy

with the coordinates y and 0.

(2)

where _PE/_0 happens to be zero. The Q's are the generalized aero-

dynamic forces. Structural damping is neglected. When the indicated

differentiations are performed_ the equations become

I0" - mxpy = Ql (3a)

-mxp + +Kyy : % (3b)

Generalized Aerodynamic Forces

A generalized force is the work done per unit displacement when the

system undergoes a virtual displacement of one of the degrees of freedom.

The generalized aerodynamic force is assumed to be composed of terms

which are linearly dependent on y, 0, and their derivatives with respect

to time. If unsteady aerodynamics are neglected, the essential components

of the generalized forces for a straight-winged airplane can be written

Qx : M_0 +M00 - -_- XacdN #

Q2 = (2_olal0dq)O+(2_ola Zad_)#_-

where a term is positive if the force or moment involved is directed in

the positive direction of the appropriate coordinate. The derivatives

M_ and M 0 can be readily written in terms of the conventional airplane

stability derivatives.
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= qS (Cmq+ Cma) , Me = clSc-Cm 

The term Za(q) can be interpreted as the air load distribution resulting

from a spanwise angle-of-attack distribution defined by a(q) in radians,

and Ze(q) can be interpreted as the air load distribution resulting from

a uniform angle-of-attack distribution of I radian. The generalized bend-

ing force due to e and pitching moment due to _ (from downwash lag)

were considered negligible.

The air load distribution Za can be written as the combination of

the loading caused by an angle-of-attack distribution of ao(q) radians

and (m/M)Z e or

m

Za = Zao - _ Ze

The advantage of this approach is that the generalized aerodynamic forces

can be written as explicit functions of m/M. If this relation and the

fact that a(q) = ao(_)- (m/M) are used, the expressions of Q1 and Q2

may be rewritten

Q1 = M_e+Me@- l(xa2_olZaod q - _ 2_olZ@_acdq)Y

(2_ol m _ol )Q2 = a oz edq - _ 2 ?,edq e +

1 [2_laoZaodq- M(2_]'aolodl]+2_o'Zaodq)+(M)22_lzodq]#

where the constant xa in Qz results from the fact that Zao contains
no tail or fuselage effect and the assumption that Xa is uniform over

the span. For convenience all the terms involving spanwise integrations

will be designated as aerodynamic derivatives represented by single

symbols with subscripts.

l<x m)Qz = M_e+Me8 - V aZao + M Me #

m _m m e •
Q2 = (Yo- _Zo)O+ 1 [Yao _(Yo-Zao)+(_)Zo]Y

(4a)

(4b)

The term Z e is the rate of change of vertical force with e and

can be written in terms of the familiar airplane lift curve slope as

Z e = -qSCL_; Zao is the rate of change of vertical force caused by an

angle-of-attack distribution (9/V)ao(q) with y/V; Ye and Yao are
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generalized wing-bending force derivatives whose definitions follow from
the subscripts. Small changes in ao(q) have been found to have little
effect on these derivatives.

Equations of Motion

If equations (3) and (4) are combineda set of homogeneousequations
of motion can be written. With D as the differential operator d/dt,
these equations are

m I m

- O+ + L_)ZoID+Ky_Y= 0[-mXp D2 _Yo - _ ZO_] {mgD2- _ [Yao- M_Yo Zao)+ m 2

These equations will be useful in the examination of the wing-bending

mode but, since no independent vertical translation of the airplane is

allowed, the airplane short-period mode is not well represented. In the

development of the equations the coordinate deflections are held to small

displacements, unsteady aerodynamics are not included, and a constant

bending shape ao(q) is assumed.

DETERMINATION OF STABILITY BOUNDARIES

Dimensionless Form of Equations of Motion

The reduction of the equations of motion to the two degree of freedom

form of equations (5) makes possible an analysis in general algebraic

terms of any airplane to which the equations are applicable. For a

general study it is convenient to group the variable quantities describ-

ing the airplane characteristics and flight conditions into dimensionless

parameters.

In the analysis of equations (5) the following dimensionless quantities

were found to be convenient:

T

m T

k o

dimensionless time, wet

m

effective tip mass ratio,

ru e
dimensionless frequency in uncoupled pitch, T
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_e

!

Xp

i meM@ i M_

damping ratio of airplane in uncoupled _itch, 2 M e - 2 eel

dimensionless effective tip mass center-of-gravity location, Xp
r

I
Xa

U I

m_

7, I
a o

Y;

y,
a©

Xa

dimensionless wing center-of-pressure location, -_-

dimensionless stability margin,

mg
generalized wing mass ratio, _-

Za o

Ze

Ye

Ze

Ya o

za

In terms of these new quantities equations (5) become

m'x_
_ __ p2 e + --

(m,xa0( )p2e+2_ede+e-m Xpp -ke + -d- Z p : 0

(6a)

i

u'm& (Y$ -m')(9+

p_Y) + k8 + : 0

(6b)

where p is a new differential operator meaning d/dT.

The Criterion for Neutral Stability

The conventional method of determining the boundaries of neutral

stability is by the Routhe criterion. However, even with a fairly simple

fourth-order system such as this the computatiDns are quite tedious and

any physical feeling for the mechanism of the instability is lost. The

equation system (6) lends itself very well to _nother method of determin-

ing stability boundaries which is satisfactory for the present analysis.

It greatly aids in physical interpretation of the cause of instability,

and the computations required are very simple.



13

The system is assumed to be in a steady undamped oscillation at the

coupled natural wing-bending frequency, and the necessary conditions for

this undamped oscillation to exist are used to define the stability

boundaries. If the coupled natural frequency in wing bending is WB,

then based on the dimensionless time used in equation (6), the natural

bending frequency is _B/w8, which will be called _.

By assumSng an undamped solution to equations (6) of the form

y/r = (Yo/r)e z_T and substituting this solution into the pitching-moment

equation (6a) it is easily shown that

e = (A+iB) _ ei_T

where

A = --

m Xa , > 2m,x_22(l__2)+2k e ' + --u-Za o _8_

(1 - c2)_ + (2_;en)2

and

B ____

(m xa )ke ' + -E z&o _(z - _=) +2m'xS_en3

(l - _2)2 + (2(:e_)2

But since y/r : (Yo/r)e i_T and p(y/r) = i_(Yo/r)ei_T , a can be written
as

e :A +Sp

and

p2e = -_2 e

Using the expression for 8, the generalized bending force equation (6b)
can be written as

p2(})+L m_ +
B(Y_-m')

2u'm_

+ k8 Y
m_u-----T[Y_o - m'<Y_ + Z_ + m' 21 }P<r_ +

, , + Wy2 y
m m_ + u mg (Y$-m') = 0

(7)
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Since this equation is valid only for tl_e case of undamped oscilla-

tions (neutral dynamic stability), the coefficient of p(y/r) must vanish.
Thus

B(Y_-m') ke IY'-m'(Y_+Z_o)+m'2] = 0 (8a)Bax m' + + a°

This leaves, in equation (7), for sinusoidal motion

m_. + u-"_m_ (YE_-m')+ \_e/--- = _2
(Sb)

Equation (8a) defines the stability boundary in terms of _ rather than

_y/_e. For design use, _y/_e could easily be found in terms of _ from

equation (8b) provided m_ is known accurately. 0nly equation (Sa) was

used in this study and it should be noted that neither m_ nor _y appears

in this equation. Hence, Ky does not enter in any fashion and the stiff-

ness problem is bypassed, as mentioned earlier. Such an approach, which

does not employ equation (Sb) to determine _y/_e, would be useful if the

analysis were used in conjunction with actuaJ flight test, where the

coupled bending frequency WB (_B = _e) would be measured.

Stability Boundaries

Equation (8a) has been used to plot stability boundaries on a plane

of m' versus _ with all other parameters held constant (figs. 3, 4,

and 5). Since the number of independent parsmeters is large, presenta-

tion of boundaries for all possible combinations of these parameters over

a range of values would be prohibitive. For this reason only a few combi-

nations are shown to illustrate the general effects of variations in each

quantity on the boundary.

' ke, and u'. For computa-In figure 3 the quantities varied are Xp,
tion of these boundaries the other parameters were held constant at the

= = = Z' = 0.255, Y' = 0.108.following values: _e 0.35, x_ O, Y_ 0.270, ao ao

All these except x_ are values which were c_iculated for an example air-

plane and thought to be typical of a straight-_ing airplane with large

wing-tip pods. The value of x_ was chosen partly because of simplifica-

tions which accompany the value, and partly b_cause it is well within the

range of reasonable values. Effects of variations in these quantities

are dealt with later. The values of ke and _' were chosen to fall in

what was considered the range of interest for airplanes which are most

likely to encounter this problem.

The boundaries in figures 4 and 5 are calculated with x_ : O,
mainly because of the great simplification afforded by this value. When



x_ is zero, the boundaries becomeindependent of ke and u' as is seen
l_ter. The significance of the range of values of Xa/U used in fig-
ure 5 will be discussed in the next section.

DISCUSSIONOFSTABILITYBOUNDARIES

Modeof Instability

The stability boundaries indicate conditions under which undamped
oscillations of the system will occur. Since the system is regarded as
having two degrees of freedom, it must be determined whether the neutrally
stable modeis what has been called coupled wing bending or a coupled mode
which is predominantly pitching. The nature of the neutrally stable mode
can be determined quite easily for any particular case by substituting the
appropriate natural frequency back into the equations and determining the
relation between the pitch and wing-bending coordinates.

It was found that the modesof oscillation associated with the
boundaries considered in this study involved a maximumvalue of the ratio
rlel/ly I which was on the order of ke or, in this study, 0oi. Physi-
cally, this meansthat a point on the airplane fuselage a longitudinal
distance from the airplane center of gravity equal to the radius of
gyration would have linear oscillation amplitude with respect to the
center of gravity_ caused by pitching, usually less than one-tenth the
oscillation amplitude of the wing tip referred to the center of gravity.
From this observation it can be said that the coupled modeassociated
with the boundaries is primarily one of wing bending. (The largest pitch-
ing amplitudes occur under conditions of large longitudinal displacements
of the tip mass center of gravity from the airplane center of gravity and
the higher frequency ratios.)

The phasing of pitch with respect to cantilever bending deflection
in these neutrally stable modes (except for one boundary discussed later)
is such that e leads y by an amount ranging from a fairly small angle
to something greater than 90° (vector plot, sketch (a)). The larger lead
angles are associated with small values
of _ and the smaller lead angles with
values of _ near 1.0. Physically this
phase relation meansthat when the wing i _
tip is traveling downwardwith maximum _ _4
velocity during the undampedoscillation \ _y

(at zero displacement), the pitch angle \

is positive. In other words_ there is a \
positive component of pitch in phase with \

bending velocity.

It is this in-phase component of

pitch which is the major factor in

reducing the damping to zero, since the

f
f

Sketch (a)

Y
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air loads caused by the in-phase pitch effectively alter those which

normally supply the damping in the uncoupled wing-bending mode. This

fact can be illustrated with the aid of a rather simplified picture of

the air loads which provide the damping. The distribution of vertical

velocity along the span, #a(_), for an airplane with rather large wing-

tip masses might appear as in figure 6(a) during a wing-bending oscilla-

tion. Such a velocity distribution would have associated with it a

spamwise angle-of-attack distribution equal to (y/V)a(_) (fig. 6(b)) during

forward flight and consequently a spanwise _.oading (y/V)Za which would

resemble that in figure 6(c). In an uncoupled bending oscillation or a

bending oscillation in which there were no pitch in phase with bending

velocity (e_), it is this loading which would tend to damp the oscillation.
It can be seen from the figures that such an oscillation would always be

stable since the air loads oppose the motion essentially over the entire

span.

In the unstable bending modes mentioned above, however, there is a

component of airplane pitch in phase with bending velocity which is

accompanied, of course, by a spanwise ioadiIkg similar to that sho_m in

figure 6(d). The effective span loading in phase with #, which deter-

mines the damping, then, becomes the sum of the loadings of figures 6(c)

and 6(d) shown in figure 6(e). It is easily seen from a comparison of

figure 6(e) with 6(a) that the air load favors rather than opposes the

direction of motion of the wing over the center part of the span. Integra-

tion of the product of the loading of figure 6(e) with the mode shape

a(q) over the span indicates whether the ne-_ effect is stable, neutrally

stable, or unstable oscillation. Again by [.ooking at the figures one can

see that the stability of the oscillation a_ determined from this integra-

tion will depend mostly on the amount of pi-_ch in phase with # and the

spanwise location of the nodes. This latte:" quantity is determined by the

effective tip mass ratio m' and the bendi1_g shape. Movement of the nodes

toward the tips (or increasing m') and inc:'easing the component of pitch

in phase with bending velocity are both con mibutory to instability in

this mode.

A brief look at the stability criterio_ (eq. (8a)) will help in the

physical interpretation of the effects of tJ_e various parameters on the

stability boundaries. The third term of th:.s expression is simply the

discriminant or stability criterion for the uncoupled wing-bending mode

(see coefficient of p(y/r) in eq. 6(b)). !_here is no positive value of

m' between 0 and i for which the bracketed expression becomes 0 with

realistic aerodynamic derivatives, meaning _hat the single degree of free-

dom wing-bending system cannot become unstable. This was demonstrated

physically above.

The second term of equation (8a) is proportional to the component of

pitch in phase with bending velocity since it was shown that

e = A(y/r) + (B/_)p(y/r) and is the only add:-tional term which would

appear in the stability criterion of the coupled system if x_ were
zero. Also_ it was found in the calculation of the stability boundaries
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that the first term, proportional to pitching acceleration in phase with

bending velocity, is not an important contributor for _ less than 1.0

even when x_ is not zero, so that the examination of only the second
and third terms can give much insight into the behavior of the boundaries

at the lower frequency ratios. If the first term is neglected equa-

tion (8a) can be rewritten in the following manner:

ao _ Yb -m' +Z'ao + + = 0
(9)

The term B/2k e can be shown equal to e_/(y/V), where e# = (B/2)p(y/r)

is the component of pitch in phase with bending velocity and y/V is

simply the characteristic angle of attack caused by wing-bending velocity.

As e# goes to zero equation (9) becomes the same as the third term of
equation (8a). The effect of this term is to alter the aerodynamic

derivatives as they appear in the third term of equation (8a).

A qualitative plot of m' required for neutral stability versus

e#/(#/V) based on the simplified criterion, equation (9), is shown in
figure 7. Since all the boundaries in figures 3, 4, and 5 except one

are associated with modes of oscillation involving pitch i__nphase with

bending velocity the right-hand boundary will be of most interest. It

can be seen that as the in-phase component of pitch is increased from

zero_ a value is reached where neutral stability can exist for 0 <m' < 1.0.

As e_/(#/V) increases beyond this value, the value of m' required for
neutral stability decreases. This figure will be referred to as the

effects of the various parameters are discussed.

The general effect of the first term of equation (8a) is to raise

the boundaries in figure 3 with positive values of x_ above what would

be found with equation (9) in the region of 2 = 1.0 and above.

Relation of Boundaries to Existing Airplanes

Now that stability boundaries have been established in terms of

several dimensionless quantities, it is of interest to know where exist-

ing airplane types stand relative to these boundaries. First, orienta-

tion on the m'- 2 plane will be considered. For airplanes with no mass

concentrations at the tips_ the effective wing-tip mass is quite small

compared with the total airplane mass (m' probably less than 0.I), and

the fundamental wing-bending frequency is high in comparison with the

uncoupled pitching frequency of the airplane. Such airplanes would be

below and to the right of the portion of the m' - 2 plane shown in fig-

ures 3 and 4. One possible exception to this might be a flying wing

configuration where the total mass is distributed along the wing. In

this case m' might be fairly large. (The value of m' for a uniform

beam, an extreme example, is about 0.38.)
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The addition of concentrated masses to th_ wing tips tends to move

a given airplane upward and to the left on the plot of m' versus _, and,

as the concentrated wing-tip mass is increased, the trend continues in

the same direction toward the unstable regions. However, even airplanes

which are now considered to have very large wing-tip pods have insuffi-

cient values of effective tip mass ratio m' to reach any of the bounda-

ries shown in figures 3 and 4. To cite a specific example, a fully loaded

F-89D, which represents nearly the upper limit in wing-tip mass ratios for

current airplanes, could be shown as a point slightly above m' equal to

0.25 and near _ = 1.0 for a condition of high speed and low altitude.

The location of the boundary itself on the m' - _ plane is a func-

tion of some quantities which should be related to existing airplanes.

The quantities x_ and u' are fairly straightforward. They are dimen-
sionless on the radius of gyration instead of the more familiar mean aero-

dynamic chord, but these two characteristic lengths are of similar size.

Again using the F-89D as an example, the approximate range of x_ is
from 0.25 to -0.4, and of u' is from nearly O to 0.45. The large value

of u' is the result of a center-of-pressure _hift in the transonic

range, and similar values can be expected for _irplanes flying

supersonically.

The term ke is comparable in value to ti_e familiar reduced fre-

quency encountered in the study of classical flutter, the only difference

being the use of radius of gyration instead of semichord as the charac-

teristic length. A value of ke equal to 0.i represents almost the

upper limit for present-day fighter-type airpl_nes. The highest values

of ke would be encountered at low supersonic speeds and low altitudes.

The term x_ is the distance of the wing aerodynamic center from

the airplane center of gravity in fraction of ;he radius of gyration r.

This quantity may be either positive or negative but will usually be less

in absolute magnitude than u' for convention_ airplanes.

Effects of Tip Mass Center-of-Gr_rity Movement

Figure 3 indicates the effect of tip mass center-of-gravity movement

on the location of the boundary. As the tip m_ss center of gravity is

moved forward of the airplane center of gravit_ from x_ = 0 to x_ = 0.5,
the unstable region expands downward and to th_ right on the m'-

plane. This is a destabilizing effect in the _ense that an airplane on

the stable side of the boundary could become u_Lstable with forward move-

ment of the tip mass. Movement of the tip mas_; center of gravity in a

negative, or aft, direction from the airplane c_enter of gravity has the

opposite effect. However, the danger of reach2ng the boundary for nega-

tive x_ with an actual airplane would be ve_, small, so it is not con-

sidered. The marked effectiveness of x_ in moving the boundary suggests

that movement of the tip mass center of gravity would be a useful tool for

eliminating any problem involving this type of instability.
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The effect of forward displacement of the tip mass on the mode of

oscillation is to increase the amplitude and lead angle of e with

respect to y by imposing a pitching moment in phase with bending
acceleration. This also means that over most of the frequency range

forward movement of the tip mass increases the amount of pitch in phase

with bending velocity. By referring to figure 7 it can be seen that an

increase in e# tends to lower the value of m' required for neutral

stability. This effect is also evident from the physical argument of

figure 6 in that a larger loading near the midspan permits the node lines

to be farther from the tips for neutral stability.

Effects of k e and u'

Unfortunately; the physical significance of independently varying

ke and u' is not obvious. The term ke is one which arises in the non-
dimensionalization of time and of forces and moments caused by wing-bending

velocity. It is the key quantity in determining the local angle of attack

at a point on the wing resulting from a given vertical velocity of that

point. When the definition of ke is rewritten it acquires an interest-

ing meaning which; although somewhat removed from its origin, helps in

obtaining a physical feeling for the term.

wsr f Me

The ratio under the radical in the right-hand expression may be thought

of as a ratio of energies. Except for a factor of 2; the denominator is

simply the kinetic energy of the airplane due to forward motion; and the

numerator can be interpreted as the potential energy resulting from a

unit deflection in pitch or the energy contained in an uncoupled, undamped

pitching oscillation of unit amplitude. Thus the term becomes a measure

of the energy contained in the uncoupled pitching mode as compared to the

kinetic energy of the airplane in forward motion.

The definition of u' is very simple but the way in which it enters

the problem independent of k e is not at all obvious. Just as ke; u'

can be rewritten to have a physical interpretation quite apart from that

of a dimensionless static stability margin. The term u' can be written

M_ear
U ! = --

Ze

The numerator might be called a characteristics inertia force which would

occur during an undamped; uncoupled pitching oscillation of unit amplitude;

and the denominator is the corresponding characteristic aerodynamic force

on which all aerodynamic forces have been nondimensionalized. With this
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interpretation u' becomesa measure of the relative importance of inertia
and aerodynamic forces. For example, an ind_pendent decrease in u' indi-
cates an increase in the significance of aer_dynamic forces in the system.
(This can also be seen in eqs. (6).)

The first point of interest is that when x_ = O, the boundary of

figure 3 is independent of k0 and u'. The reason is that under this con-

dition the coupling between pitch and wing bending is purely aerodynamic.

In the more general case when x_ is not zero, both inertial and aero-

dynamic coupling occur.

In the range of values considered for _ and u' _ k0 appeared to
have only small effect on the location of the boundaries. The small

change that was noticed indicates that an independent increase in k0

(u' constant) tends to move the boundary upward and to the left on the

m' -fl plane for positive values of x_, a favorable direction. It

should be remembered that this observation is based only on small values

of k0. For a given airplane k 0 can be changed significantly only

through Mach number effects or change of altitude (or automatic controls).

The effect of changes in u' on the boundaries is seen to be par-

ticularly noticeable for values of _ above 1.0. An independent increase

in u' tends to shrink the boundary to the /eft for positive x_. For a
given airplane u' can be varied significantly only through Mach number

effects (or automatic controls).

Both k0 and u' are quantities which axe determined by considera-

tions other than wing-bending stability 3 and for this reason could not

generally be altered for the purpose of imprcving the wing-bending

characteristics.

Effects of Pitch Dam_ing

It should be remembered that the boundaries in figure 3 were

calculated with t0 and Xa/U , and with the aerodynamic derivatives held

constant. At this point some of the effects on the boundaries of devia-

tions of t0 and xa from their assigned values will be examined. These

effects will be observed quantitatively only for the condition when

x_ = 0, since under this condition the boundaries become independent of

k e and u', and the stability criterion become3 exactly that of equation (9).

These results can be extended qualitatively tD other conditions.

The effect on the boundary of changes in pitch damping is illustrated

in figure 4. The boundary for t0 = 0.35 is the same as that for x_ = 0

in figure 3_ and the second boundary differs only in that t0 has been

lowered to 0.2. The effect of lowering _e Ls to extend the unstable

region slightly as fl approaches 1.0. Physi:ally the effect of lowering

_e is to increase the magnitude of pitch in the coupled mode near
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= 1.0 through the phenomenonof resonance. This in turn increases the
componentof pitch in phase with bending velocity and hence the boundary

' is not equalis lowered. This general effect is also present where Xp
to zero.

Effects of Wing Aerodynamic Center Location

The longitudinal position of the wing aerodynamic center xa enters
into the stability criterion (eq. (8a)) as a ratio Xa/U. Aerodynamically
the static stability term Me is composed of two major parts_ the contri-

bution of the horizontal tail and the contribution of the wing. The wing

contribution can be either stabilizing or destabilizing depending on

whether the wing aerodynamic center is aft or forward of the airplane

center of gravity. The ratio Xa/U is a measure of the contribution of

the wing to the total longitudinal static stability M e. A positive

value indicates a destabilizing wing contribution; a negative value indi-

cates a stabilizing wing contribution; and a value of -i.0 indicates that

all the stability is contributed by the wing and none by the tail.

The effect of changing the ratio Xa/U on the boundary for x_ = 0
is shown in figure _. Except for the changes in Xa/U , all conditions

are the same as for the x_ = 0 boundary in figure 3- The boundaries
for Xa/U = 0.5, O, and -0._ give an indication of the effect of this

parameter for conventional airplanes. If the wing gives a destabilizing

contribution to the longitudinal static stability_ the boundaries of fig-

ure 3 are generally lowered_ and the reverse is true for a stabilizing

wing contribution. This effect is more pronounced for low values of

than for high values_ and_ in fact_ this is the only parameter discussed

so far that has varied the location of the boundary at _ = 0. This will

be discussed in the next section.

The actual mechanics of this effect are based on the fact that the

tail contribution to static longitudinal stability is most important in

producing a pitching moment proportional to and in phase with bending

velocity_ since the wing contribution tends to be canceled out in the

wing-bending oscillation. The increase in 8# caused by an increase in
pitching moment in phase with #, then, lowers the boundary in accordance

with the effect shown in figure 7.

As a matter of interest a boundary was computed for Xa/U = -2.0.

This is a case where twice the total amount of static stability is con-

tributed by the wing_ or_ in other words_ the "tail" has a negative

contribution as in a canard configuration. The result of this computa-

tion was the lower boundary in figure 5. The mode of oscillation in

this case was primarily wing bending as with the other cases_ but the
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Sketch (b)

pitching motion lagged wing bending,

producing a pitch component in

antiphase with bending velocity

(sketch (b)).

Phy_ically, the canard surface

produces a pitching moment in anti-

phase wi_h bending velocity as opposed

to the in-phase pitching moment pro-

duced by the conventional tail. As

a result of this, a component of pitch

in antiphase with wing bending is

produced which is large enough to

reach the left-hand boundary of fig-

ure 7. Also, by reversing the sign

of the span loading caused by pitch

in phase with # in figures 6(d)

and 6(e), it is evident that zero damping c_i be achieved if the nodes

are moved inward toward the fuselage (or m' reduced). The possibility

of reaching this boundary with an actual airplane is remote because of

the unlikely combination of low tip mass ratios m' and low frequency
ratios _.

Location of Boundaries fo_ Small

For all the boundaries in figures 3 and 4 the value of m' associated

with neutral stability was independent of the varying parameters when

was very near zero. Letting _ approach zero in equation (8a) gives the
value

X a
Y' + Z_ Y_
ao -u- ao 'J

m ! =

Setting Xa/U equal to zero, as was done fo:r figures 3 and 4, reduces the

expression to

m' Yao Yao
Z'

a o Za o

The location of the boundary for small 2, t_len, is dependent only on the

aerodynamic derivatives and the ratio Xa/U. For negative values of

Xa/U(> -i) the boundary near 2 = 0 is above m' = Y_ /Z_ and for

positive values it is below, as illustrated _i_nfigure°5, o
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When Xa/U = 0 the portion of the boundary near _ = 0 corresponds

to the point (Yao/Zao , Yao/Zao) on the boundary of figure 7. Under this

condition calculations indicate that the component of pitch in phase with

bending velocity exactly cancels the angle of attack at the fuselage sta-

tion (_ = O) resulting from the vertical velocity -m'#/V. Changes in

Xa/U move this point as described earlier.

Knowledge of the behavior of the boundary near

tive prediction of the effect of changes in Yao/Zao

variable not yet considered.

= 0 allows qualita-

in this region, a

Minimum Value of m' Necessary for Undamped Oscillation

All the boundaries of figures 3, 4, and 5, except the one for the

canard configuration in figure 5, were found to correspond to locations

on the right-hand boundary in figure 7. It was also mentioned earlier

that the combination of parameters necessary to reach the boundary for

the canard configuration in figure 5 was a very likely one, and further

examination of the stability criterion indicates that almost any combina-

tion of parameters necessary to achieve neutral stability on the left-

hand boundary of figure 7 is in the same category. For airplanes of more

or less conventional configuration then, the right-hand boundary of fig-

ure 7 will almost certainly be the critical one.

If only the right-hand boundary is considered, figure 7 shows that

undamped oscillations cannot be achieved for values of m' less than Y_,

since the boundary approaches this value asymptotically as 8_ increases

indefinitely. It should be remembered that this was derived with a

stability criterion which was useful only for _<i.0_ but the minimums

of the various boundaries calculated always occurred at values of _ less

than 1.0_ so this minimum value of m' is a useful quantity. If m' is

below this value, instability by the mechanism considered in this _tudy

is very unlikely. Probable values of Y_ for a conventional type airplane

lie between 0.25 and 0.30.

CONCLUDING REMARKB

An oscillatory instability in wing bending coupled with airplane

pitching was examined by means of a simple two degree of freedom repre-

sentation of a straight-winged airplane. Although many effects were not

accounted for, it is felt that the basic mechanism of the instability

was well represented in the system. The results should be considered a

guide to more detailed analyses for particular cases because of the sac-

rifice of detail in this study in the interest of generalization. The

effects of changes in several quantities describing the airplane and its

flight condition on wing-bending stability are shown in the form of

stability boundaries.
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It was shown that for practical purposes there is a minimum value of

the ratio of effective wing-tip mass to total airplane mass below which

wing-bending instability cannot occur by this mechanism. It was also

found that this instability is most likely to occur under conditions of

high ratios of effective tip mass to total airplane mass, ratios of

natural coupled wing-bending frequency to natural uncoupled pitching

frequency near or below 1.0, and tip mass cer_ter-of-gravity locations

ahead of the total airplane center of gravity. Movement of the tip mass

center-of-gravity location appeared to be the most effective method of

avoiding a region of instability for an airplane which is critical in

this regard.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Sept. 17, 1958
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Figure i.- Pitch and wing-bending coordinates deflected in a

positive direction.
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(a) Spanwise vertical velocity distribution, ya(q).
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(b) Spanwise angle-of-attack distribution, V a(q).

due to angle-of-attack distribution, V a(q).(c) spanwise air load _ Za

(d) Spanwise air load due to pitch in phase with bending velocity, e#_ e.

-I 0 I

Span station_ _/

(e) Effective spanwise air load in phase with #.

Figure 6.- Contributions of wing-bending velocity and airplane pitch to

the generalized damping force in the coupled wing-bending mode.
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Figure 7.- Qualitative stability boundary s_owing the importance of the

component of pitch in phase with bending velocity in determination

of wing-bending stability.
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