5,453 research outputs found

    How branching can change the conductance of ballistic semiconductor devices

    Full text link
    We demonstrate that branching of the electron flow in semiconductor nanostructures can strongly affect macroscopic transport quantities and can significantly change their dependence on external parameters compared to the ideal ballistic case even when the system size is much smaller than the mean free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs two-dimensional electron gas we observe a splitting of the commensurability peaks in the magnetoresistance curve. We show that a model which includes a random disorder potential of the two-dimensional electron gas can account for the random splitting of the peaks that result from the collimation of the electron beam. The shape of the splitting depends on the particular realization of the disorder potential. At the same time magnetic focusing peaks are largely unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.

    Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray micro-diffraction

    Full text link
    We depict the use of x-ray diffraction as a tool to directly probe the strain status in rolled-up semiconductor tubes. By employing continuum elasticity theory and a simple model we are able to simulate quantitatively the strain relaxation in perfect crystalline III-V semiconductor bi- and multilayers as well as in rolled-up layers with dislocations. The reduction in the local elastic energy is evaluated for each case. Limitations of the technique and theoretical model are discussed in detail.Comment: 32 pages (single column), 9 figures, 39 reference

    Three-dimensional diffraction mapping by tuning the X-ray energy

    Get PDF
    Three-dimensional reciprocal-space maps of a single SiGe island around the Si(004) Bragg peak are recorded using an energy-tuning technique with a microfocused X-ray beam with compound refractive lenses as focusing optics

    Integrating Beneficiation into Regolith Conveyance Systems

    Get PDF
    Regolith conveyance includes hauler/dumpers, hoppers, augers, pneumatic transport subsystems, and other elements. The features of the conveyance and the time the material stream spend in conveyance may be used synergistically to perform beneficiation, pre-processing (such as heating), and other tasks, thus reducing the mass and complexity of the overall ISRU system. Since the cost of spaceflight is largely driven by the cost of launching mass out of Earth's gravity well, the conveyance system should be leveraged in this way to the maximum extent

    India

    Get PDF

    Influence of contact angle on slow evaporation in two-dimensional porous media

    Full text link
    We study numerically the influence of contact angle on slow evaporation in two-dimensional model porous media. For sufficiently low contact angles, the drying pattern is fractal and can be predicted by a simple model combining the invasion percolation model with the computation of the diffusive transport in the gas phase. The overall drying time is minimum in this regime and is independent of contact angle over a large range of contact angles up to the beginning of a transition zone. As the contact angle increases in the transition region, the cooperative smoothing mechanisms of the interface become important and the width of the liquid gas interface fingers that form during the evaporation process increases. The mean overall drying time increases in the transition region up to an upper bound which is reached at a critical contact angle \Theta_c. The increase in the drying time in the transition region is explained in relation with the diffusional screening phenomenon associated with the Laplace equation governing the vapor transport in the gas phase. Above \Theta_c the drying pattern is character- ized by a flat traveling front and the mean overall drying time becomes independent of the contact angle. Drying time fluctuations are studied and are found to be important below \Theta_c, i.e., when the pattern is fractal. The fluctuations are of the same order of magnitude regardless of the value of contact angle in this range. The fluctuations are found to die out abruptly at \Theta_c as the liquid gas interface becomes a flat front

    cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner

    Get PDF
    cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior

    Structural and magnetic properties of an InGaAs/Fe3_3Si superlattice in cylindrical geometry

    Full text link
    The structure and the magnetic properties of an InGaAs/Fe3Si superlattice in a cylindrical geometry are investigated by electron microscopy techniques, x-ray diffraction and magnetometry. To form a radial superlattice, a pseudomorphic InGaAs/Fe3As bilayer has been released from its substrate self-forming into a rolled-up microtube. Oxide-free interfaces as well as areas of crystalline bonding are observed and an overall lattice mismatch between succeeding layers is determined. The cylindrical symmetry of the final radial superlattice shows a significant effect on the magnetization behavior of the rolled-up layers
    corecore