269 research outputs found

    oMEGACat I: MUSE spectroscopy of 300,000 stars within the half-light radius of ω\omega Centauri

    Full text link
    Omega Centauri (ω\omega Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic datasets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω\omega Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic dataset combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than two magnitudes below the main sequence turn-off. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main sequence stars (18 mag <magF625W<\rm < mag_{F625W}<22 mag) and red giant branch stars (16 mag <magF625W<<\rm mag_{F625W}<10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic dataset will enable future studies that will transform our understanding of ω\omega Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail.Comment: 27 pages, 18 figures, 3 tables, accepted for publication in ApJ, the catalog will be available in the online material of the published articl

    Genetic basis of hyperlysinemia

    Get PDF
    Background: Hyperlysinemia is an autosomal recessive inborn error of L-lysine degradation. To date only one causal mutation in the AASS gene encoding aminoadipic semialdehyde synthase has been reported. We aimed to better define the genetic basis of hyperlysinemia. Methods. We collected the clinical, biochemical and molecular data in a cohort of 8 hyperlysinemia patients with distinct neurological features. Results: We found novel causal mutations in AASS in all affected individuals, including 4 missense mutations, 2 deletions and 1 duplication. In two patients originating from one family, the hyperlysinemia was caused by a contiguous gene deletion syndrome affecting AASS and PTPRZ1. Conclusions: Hyperlysinemia is caused by mutations in AASS. As hyperlysinemia is generally considered a benign metabolic variant, the more severe neurological disease course in two patients with a contiguous deletion syndrome may be explained by the additional loss of PTPRZ1. Our findings illustrate the importance of detailed biochemical and genetic studies in any hyperlysinemia patient

    Cross-sectional observational study of 208 patients with non-classical urea cycle disorders.

    Get PDF
    Urea cycle disorders (UCDs) are inherited disorders of ammonia detoxification often regarded as mainly of relevance to pediatricians. Based on an increasing number of case studies it has become obvious that a significant number of UCD patients are affected by their disease in a non-classical way: presenting outside the newborn period, following a mild course, presenting with unusual clinical features, or asymptomatic patients with only biochemical signs of a UCD. These patients are surviving into adolescence and adulthood, rendering this group of diseases clinically relevant to adult physicians as well as pediatricians. In preparation for an international workshop we collected data on all patients with non-classical UCDs treated by the participants in 20 European metabolic centres. Information was collected on a cohort of 208 patients 50% of which were ≥ 16 years old. The largest subgroup (121 patients) had X-linked ornithine transcarbamylase deficiency (OTCD) of whom 83 were female and 29% of these were asymptomatic. In index patients, there was a mean delay from first symptoms to diagnosis of 1.6 years. Cognitive impairment was present in 36% of all patients including female OTCD patients (in 31%) and those 41 patients identified presymptomatically following positive newborn screening (in 12%). In conclusion, UCD patients with non-classical clinical presentations require the interest and care of adult physicians and have a high risk of neurological complications. To improve the outcome of UCDs, a greater awareness by health professionals of the importance of hyperammonemia and UCDs, and ultimately avoidance of the still long delay to correctly diagnose the patients, is crucial

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Get PDF
    Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia&nbsp;in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc&nbsp;from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases

    Amino acid synthesis deficiencies

    Get PDF
    In recent years the number of disorders known to affect amino acid synthesis has grown rapidly. Nor is it just the number of disorders that has increased: the associated clinical phenotypes have also expanded spectacularly, primarily due to the advances of next generation sequencing diagnostics. In contrast to the "classical" inborn errors of metabolism in catabolic pathways, in which elevated levels of metabolites are easily detected in body fluids, synthesis defects present with low values of metabolites or, confusingly, even completely normal levels of amino acids. This makes the biochemical diagnosis of this relatively new group of metabolic diseases challenging. Defects in the synthesis pathways of serine metabolism, glutamine, proline and, recently, asparagine have all been reported. Although these amino acid synthesis defects are in unrelated metabolic pathways, they do share many clinical features. In children the central nervous system is primarily affected, giving rise to (congenital) microcephaly, early onset seizures and varying degrees of mental disability. The brain abnormalities are accompanied by skin disorders such as cutis laxa in defects of proline synthesis, collodion-like skin and ichthyosis in serine deficiency, and necrolytic erythema in glutamine deficiency. Hypomyelination with accompanying loss of brain volume and gyration defects can be observed on brain MRI in all synthesis disorders. In adults with defects in serine or proline synthesis, spastic paraplegia and several forms of polyneuropathy with or without intellectual disability appear to be the major symptoms in these late-presenting forms of amino acid disorders. This review provides a comprehensive overview of the disorders in amino acid synthesis

    The natural history of classic galactosemia: lessons from the GalNet registry.

    Get PDF
    BACKGROUND Classic galactosemia is a rare inborn error of carbohydrate metabolism, caused by a severe deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). A galactose-restricted diet has proven to be very effective to treat the neonatal life-threatening manifestations and has been the cornerstone of treatment for this severe disease. However, burdensome complications occur despite a lifelong diet. For rare diseases, a patient disease specific registry is fundamental to monitor the lifespan pathology and to evaluate the safety and efficacy of potential therapies. In 2014, the international Galactosemias Network (GalNet) developed a web-based patient registry for this disease, the GalNet Registry. The aim was to delineate the natural history of classic galactosemia based on a large dataset of patients. METHODS Observational data derived from 15 countries and 32 centers including 509 patients were acquired between December 2014 and July 2018. RESULTS Most affected patients experienced neonatal manifestations (79.8%) and despite following a diet developed brain impairments (85.0%), primary ovarian insufficiency (79.7%) and a diminished bone mineral density (26.5%). Newborn screening, age at onset of dietary treatment, strictness of the galactose-restricted diet, p.Gln188Arg mutation and GALT enzyme activity influenced the clinical picture. Detection by newborn screening and commencement of diet in the first week of life were associated with a more favorable outcome. A homozygous p.Gln188Arg mutation, GALT enzyme activity of ≤ 1% and strict galactose restriction were associated with a less favorable outcome. CONCLUSION This study describes the natural history of classic galactosemia based on the hitherto largest data set

    QTLs for oil yield components in an elite oil palm (Elaeis guineensis) cross

    Get PDF
    Increased modern farming of superior types of the oil palm, Elaeis guineensis Jacq., which has naturally efficient oil biosynthesis, has made it the world’s foremost edible oil crop. Breeding improvement is, however, circumscribed by time and costs associated with the tree’s long reproductive cycle, large size and 10–15 years of field testing. Marker-assisted breeding has considerable potential for improving this crop. Towards this, quantitative trait loci (QTL) linked to oil yield component traits were mapped in a high-yield population. In total, 164 QTLs associated with 21 oil yield component traits were discovered, with cumulative QTL effects increasing in tandem with the number of QTL markers and matching the QT+ alleles for each trait. The QTLs confirmed all traits to be polygenic, with many genes of individual small effects on independent loci, but epistatic interactions are not ruled out. Furthermore, several QTLs maybe pleiotropic as suggested by QTL clustering of inter-related traits on almost all linkage groups. Certain regions of the chromosomes seem richer in the genes affecting a particular yield component trait and likely encompass pleiotropic, epistatic and heterotic effects. A large proportion of the identified additive effects from QTLs may actually arise from genic interactions between loci. Comparisons with previous mapping studies show that most of the QTLs were for similar traits and shared similar marker intervals on the same linkage groups. Practical applications for such QTLs in marker-assisted breeding will require seeking them out in different genetic backgrounds and environments
    corecore