1,060 research outputs found

    Fixing the conformal window in QCD

    Get PDF
    A physical characterization of Landau singularities is emphasized, which should trace the lower boundary N_f^* of the conformal window in QCD and supersymmetric QCD. A natural way to disentangle ``perturbative'' from ``non-perturbative'' contributions to amplitudes below N_f^* is suggested. Assuming an infrared fixed point persists in the perturbative part of the QCD coupling even below N_f^* leads to the condition \gamma(N_f^*)=1, where \gamma is the critical exponent. Using the Banks-Zaks expansion, one gets 4<N_f^*<6. This result is incompatible with the existence of an analogue of Seiberg duality in QCD. The presence of a negative ultraviolet fixed point is required both in QCD and in supersymmetric QCD to preserve causality within the conformal window. Evidence for the existence of such a fixed point in QCD is provided.Comment: 10 pages, 1 figure, extended version of a talk given at the QCDNET2000 meeting, Paris, September 11-14 2000; main new material added is evidence for negative ultraviolet fixed point in QC

    Conformal expansions and renormalons

    Get PDF
    The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.Comment: 10 pages, to appear in Phys. Lett.

    RS-invariant all-orders renormalon resummations for some QCD observables

    Get PDF
    We propose a renormalon-inspired resummation of QCD perturbation theory based on approximating the renormalization scheme (RS) invariant effective charge beta-function coefficients by the portion containing the highest power of bb=16(11N\frac{1}{6}(11N--2Nf)2N_{f}), for SU(NN) QCD with NfN_{f} quark flavours. This can be accomplished using exact large-NfN_{f} all-orders results. The resulting resummation is RS-invariant and the exact next-to-leading order (NLO) and next-to-NLO (NNLO) coefficients in any RS are included. This improves on a previously employed naive resummation of the leading-bb piece of the perturbative coefficients which is RS-dependent, making its comparison with fixed-order perturbative results ambiguous. The RS-invariant resummation is used to assess the reliability of fixed-order perturbation theory for the e+ee^{+}e^{-} RR-ratio, the analogous τ\tau-lepton decay ratio RτR_{\tau}, and Deep Inelastic Scattering (DIS) sum rules, by comparing it with the exact NNLO results in the effective charge RS. For the RR-ratio and RτR_{\tau}, where large-order perturbative behaviour is dominated by a leading ultra-violet renormalon singularity, the comparison indicates fixed-order perturbation theory to be very reliable. For DIS sum rules, which have a leading infra-red renormalon singularity, the performance is rather poor. In this way we estimate that at LEP/SLD energies ideal data on the RR-ratio could determine αs(MZ)\alpha_{s}(M_{Z}) to three-significant figures, and for the RτR_{\tau} we estimate a theoretical uncertainty δαs(mτ)0.008\delta\alpha_{s}(m_{\tau})\simeq0.008 corresponding to δαs(MZ)0.001\delta\alpha_{s}(M_{Z})\simeq0.001. This encouragingly small uncertainty is much less than has recently been deduced from comparison with the ambiguous naive resummation.Comment: 25 pages, uses LaTeX, 12 Postscript figures, epsfig.sty 'elsart.sty' and 'elsart12.sty' are available via anonymous-ftp at ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/elsevie

    The 4-loop quark mass anomalous dimension and the invariant quark mass

    Get PDF
    We present the analytical calculation of the four-loop quark mass anomalous dimension in Quantum Chromodynamics within the minimal subtraction scheme. On the basis of this result we find that the so-called invariant quark mass is a very good reference mass for the accurate evolution of the running MS-bar quark mass in phenomenological applications. We also obtain for the first time a complete 4-th order perturbative QCD expression for a physical quantity, the total Higgs boson decay rate into hadrons, and analyze the infrared fixed point for this case.Comment: 11 pages, Late

    Infrared Renormalons and Finite Volume

    Full text link
    We analyze the perturbative expansion of a condensate in the O(N) non-linear sigma model for large N on a two dimensional finite lattice. On an infinite volume this expansion is affected by an infrared renormalon. We extrapolate this analysis to the case of the gluon condensate of Yang-Mills theory and argue that infrared renormalons can be detected by performing perturbative studies even on relatively small lattices.Comment: LaTeX file, 6 figures in postscrip

    Infrared renormalons and analyticity structure in pQCD

    Full text link
    Relation between the infrared renormalons, the Borel resummation prescriptions, and the analyticity structure of Green functions in perturbative QCD (pQCD) is investigated. A specific recently suggested Borel resummation prescription resulted in the Principal Value and an additional power-suppressed correction that is consistent with the Operator Product Expansion. Arguments requiring the finiteness of the result for any power coefficient of the leading infrared renormalon, and the consistency in the case of the absence of that renormalon, require that this prescription be modified. The apparently most natural modification leads to the result represented by the Principal Value. The analytic structure of the amplitude in the complex coupling plane, obtained in this way, is consistent with that obtained in the literature by other methods.Comment: 6 pages, revtex4, 1 eps-figure; improved version - the paragraph containing Eqs.(18) and (19) is new, as well as the next paragraph; the Title modified; some references added; version to appear in Phys. Rev.

    QCD Corrections to t anti-b H^- Associated Production in e^+ e^- Annihilation

    Full text link
    We calculate the QCD corrections to the cross section of e^+ e^- -> t anti-b H^- and its charge-conjugate counterpart within the minimal supersymmetric extension of the Standard Model. This process is particularly important if m_t b H^+ and e^+ e^- -> H^+ H^- are not allowed kinematically. Large logarithmic corrections that arise in the on-mass-shell scheme of quark mass renormalization, especially from the t anti-b H^- Yukawa coupling for large values of tan(beta), are resummed by adopting the modified minimal-subtraction scheme, so that the convergence behavior of the perturbative expansion is improved. The inclusion of the QCD corrections leads to a significant reduction of the theoretical uncertainties due to scheme and scale dependences.Comment: 21 pages (Latex), 8 figures (Postscript); detailed discussion of scheme and scale dependences adde

    Renormalon Singularities of the QCD Vacuum Polarization Function to Leading Order in 1/Nf1/N_{f}

    Get PDF
    We explicitly determine the residues and orders of all the ultra-violet (UV) and infra-red (IR) renormalon poles in the Borel plane for the QCD vacuum polarization function (Adler D-function), to leading order in an expansion in the number of quark flavours, NfN_{f}. The singularity structure is precisely as anticipated on general grounds. In particular, the leading IR renormalon is absent, in agreement with operator product expansion ideas. There is a curious and unexplained symmetry between the third and higher UV and IR renormalon residues. We are able to sum up separately UV and IR contributions to obtain closed form results involving ζ\zeta-functions. We argue that the leading UV renormalon should have a more complicated structure than conventionally assumed. The disappearance of IR renormalons in flavour-saturated SU(NN) QCD is shown to occur for N=3,6N=3,6 or 9.Comment: 22 pages of LaTeX, revisions to this paper are mainly typographica

    Relating Physical Observables in QCD without Scale-Scheme Ambiguity

    Full text link
    We discuss the St\"uckelberg-Peterman extended renormalization group equations in perturbative QCD, which express the invariance of physical observables under renormalization-scale and scheme-parameter transformations. We introduce a universal coupling function that covers all possible choices of scale and scheme. Any perturbative series in QCD is shown to be equivalent to a particular point in this function. This function can be computed from a set of first-order differential equations involving the extended beta functions. We propose the use of these evolution equations instead of perturbative series for numerical evaluation of physical observables. This formalism is free of scale-scheme ambiguity and allows a reliable error analysis of higher-order corrections. It also provides a precise definition for ΛMS\Lambda_{\overline{\rm MS}} as the pole in the associated 't Hooft scheme. A concrete application to R(e+ehadrons)R(e^+e^- \to {\rm hadrons}) is presented.Comment: Plain TEX, 4 figures (available upon request), 22 pages, DOE/ER/40322-17

    Non-Abelian Dipole Radiation and the Heavy Quark Expansion

    Get PDF
    Dipole radiation in QCD is derived to the second order in αs\alpha_s. A power-like evolution of the spin-singlet heavy quark operators is obtained to the same accuracy. In particular, O(αs2){\cal O}(\alpha_s^2) relation between a short-distance low-scale running heavy quark mass and the \barMS mass is given. We discuss the properties of the effective QCD coupling \aw(E) which governs the dipole radiation. This coupling is advantageous for heavy quark physics.Comment: 12 pages, Late
    corecore