39 research outputs found

    Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data

    Get PDF
    Transfer functions are now commonly used to reconstruct past environmental variability from palaeoecological data. However, such approaches need to be critically appraised. Testate amoeba-based transfer functions are an established method for the quantitative reconstruction of past water-table variations in peatlands, and have been applied to research questions in palaeoclimatology, peatland ecohydrology and archaeology. We analysed automatically-logged peatland water-table data from dipwells located in England, Wales and Finland and a suite of three year, one year and summer water-table statistics were calculated from each location. Surface moss samples were extracted from beside each dipwell and the testate amoebae community composition was determined. Two published transfer functions were applied to the testate-amoeba data for prediction of water-table depth (England and Europe). Our results show that estimated water-table depths based on the testate amoeba community reflect directional changes, but that they are poor representations of the real mean or median water-table magnitudes for the study sites. We suggest that although testate amoeba-based reconstructions can be used to identify past shifts in peat hydrology, they cannot currently be used to establish precise hydrological baselines such as those needed to inform management and restoration of peatlands. One approach to avoid confusion with contemporary water-table determinations is to use residuals or standardised values for peatland water-table reconstructions. We contend that our test of transfer functions against independent instrumental data sets may be more powerful than relying on statistical testing alone

    Evaluating the use of testate amoeba for palaeohydrological reconstruction in permafrost peatlands

    Get PDF
    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change

    Peatland Microbial Communities as Indicators of the Extreme Atmospheric Dust Deposition

    Get PDF
    We investigated a peat profile from the Izery Mountains, located within the so-called Black Triangle, the border area of Poland, Czech Republic, and Germany. This peatland suffered from an extreme atmospheric pollution during the last 50 years, which created an exceptional natural experiment to examine the impact of pollution on peatland microbes. Testate amoebae (TA), Centropyxis aerophila and Phryganella acropodia, were distinguished as a proxy of atmospheric pollution caused by extensive brown coal combustion. We recorded a decline of mixotrophic TA and development of agglutinated taxa as a response for the extreme concentration of Al (30 g kg−1) and Cu (96 mg kg−1) as well as the extreme amount of fly ash particles determined by scanning electron microscopy (SEM) analysis, which were used by TA for shell construction. Titanium (5.9 %), aluminum (4.7 %), and chromium (4.2 %) significantly explained the highest percentage of the variance in TA data. Elements such as Al, Ti, Cr, Ni, and Cu were highly correlated (r>0.7, p<0.01) with pseudostome position/body size ratio and pseudostome position. Changes in the community structure, functional diversity, and mechanisms of shell construction were recognized as the indicators of dust pollution. We strengthen the importance of the TA as the bioindicators of the recent atmospheric pollution

    Die Geographische Verbreitung der Süsswasser-Rhizopoden

    No full text

    Changes in the urinary protein pattern in SDS polyacrylamide gel electrophoresis in normal and hypertensive pregnancies.

    No full text
    The urinary protein pattern was determined in 46 healthy male and female subjects, 64 patients with an uncomplicated course of pregnancy and 88 hypertensive pregnant women by use of a special urine preparation and a modified SDS-polyacrylamide gel electrophoresis (SDS-PAGE). There were no differences in the protein electrophoresis pattern between the control subjects, independent of sex and age, and the pregnant women. The number of protein bands did not change in the course of pregnancy and in the post partum period. In both groups, an intensively stained protein band with an apparent molecular weight of 105 kD was detected. In 71 of the 88 hypertensive pregnant women we found a marked reduction in intensity or complete disappearance of the 105 kD protein band. Follow-up analysis in 30 of these pregnant women showed, that in 24 cases disappearance of the 105 kD band occurred simultaneously with and in 6 women before clinical manifestation of the disease. There were no differences in the protein electrophoresis pattern between patients with preexisting renal or hypertensive disease and hypertensive women without a complicated history. In 49 of the 52 hypertensive pregnant women complete reappearance of the 105 kD band was observed 2 to 14 days after delivery. By using silver staining and Western blot, the 105 kD band was identified as Tamm-Horsfall protein. Our findings may reflect a transitory tubular dysfunction in cases of preeclampsia and support the hypothesis of an immunological pathogenesis of the disease
    corecore