900 research outputs found
A Multilevel Approach to Topology-Aware Collective Operations in Computational Grids
The efficient implementation of collective communiction operations has
received much attention. Initial efforts produced "optimal" trees based on
network communication models that assumed equal point-to-point latencies
between any two processes. This assumption is violated in most practical
settings, however, particularly in heterogeneous systems such as clusters of
SMPs and wide-area "computational Grids," with the result that collective
operations perform suboptimally. In response, more recent work has focused on
creating topology-aware trees for collective operations that minimize
communication across slower channels (e.g., a wide-area network). While these
efforts have significant communication benefits, they all limit their view of
the network to only two layers. We present a strategy based upon a multilayer
view of the network. By creating multilevel topology-aware trees we take
advantage of communication cost differences at every level in the network. We
used this strategy to implement topology-aware versions of several MPI
collective operations in MPICH-G2, the Globus Toolkit[tm]-enabled version of
the popular MPICH implementation of the MPI standard. Using information about
topology provided by MPICH-G2, we construct these multilevel topology-aware
trees automatically during execution. We present results demonstrating the
advantages of our multilevel approach by comparing it to the default
(topology-unaware) implementation provided by MPICH and a topology-aware
two-layer implementation.Comment: 16 pages, 8 figure
Breakup of the aligned H molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates
We have carried out calculations of the triple-differential cross section for
one-photon double ionization of molecular hydrogen for a central photon energy
of ~eV, using a fully {\it ab initio}, nonperturbative approach to solve
the time-dependent \Schro equation in prolate spheroidal coordinates. The
spatial coordinates and are discretized in a finite-element
discrete-variable representation. The wave packet of the laser-driven
two-electron system is propagated in time through an effective short iterative
Lanczos method to simulate the double ionization of the hydrogen molecule. For
both symmetric and asymmetric energy sharing, the present results agree to a
satisfactory level with most earlier predictions for the absolute magnitude and
the shape of the angular distributions. A notable exception, however, concerns
the predictions of the recent time-independent calculations based on the
exterior complex scaling method in prolate spheroidal coordinates
[Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical
implementation were performed, including the effect of truncating the Neumann
expansion for the dielectronic interaction on the description of the initial
bound state and the predicted cross sections. We observe that the dominant
escape mode of the two photoelectrons dramatically depends upon the energy
sharing. In the parallel geometry, when the ejected electrons are collected
along the direction of the laser polarization axis, back-to-back escape is the
dominant channel for strongly asymmetric energy sharing, while it is completely
forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure
Finding apparent horizons and other two-surfaces of constant expansion
Apparent horizons are structures of spacelike hypersurfaces that can be
determined locally in time. Closed surfaces of constant expansion (CE surfaces)
are a generalisation of apparent horizons. I present an efficient method for
locating CE surfaces. This method uses an explicit representation of the
surface, allowing for arbitrary resolutions and, in principle, shapes. The CE
surface equation is then solved as a nonlinear elliptic equation.
It is reasonable to assume that CE surfaces foliate a spacelike hypersurface
outside of some interior region, thus defining an invariant (but still
slicing-dependent) radial coordinate. This can be used to determine gauge modes
and to compare time evolutions with different gauge conditions. CE surfaces
also provide an efficient way to find new apparent horizons as they appear e.g.
in binary black hole simulations.Comment: 21 pages, 8 figures; two references adde
R.A.Fisher, design theory, and the Indian connection
Design Theory, a branch of mathematics, was born out of the experimental
statistics research of the population geneticist R. A. Fisher and of Indian
mathematical statisticians in the 1930s. The field combines elements of
combinatorics, finite projective geometries, Latin squares, and a variety of
further mathematical structures, brought together in surprising ways. This
essay will present these structures and ideas as well as how the field came
together, in itself an interesting story.Comment: 11 pages, 3 figure
Batch solution of small PDEs with the OPS DSL
In this paper we discuss the challenges and optimisations opportunities when solving a large number of small, equally sized discretised PDEs on regular grids. We present an extension of the OPS (Oxford Parallel library for Structured meshes) embedded Domain Specific Language, and show how support can be added for solving multiple systems, and how OPS makes it easy to deploy a variety of transformations and optimisations. The new capabilities in OPS allow to automatically apply data structure transformations, as well as execution schedule transformations to deliver high performance on a variety of hardware platforms. We evaluate our work on an industrially representative finance simulation on Intel CPUs, as well as NVIDIA GPUs
Polariton propagation in weak confinement quantum wells
Exciton-polariton propagation in a quantum well, under centre-of-mass
quantization, is computed by a variational self-consistent microscopic theory.
The Wannier exciton envelope functions basis set is given by the simple
analytical model of ref. [1], based on pure states of the centre-of-mass wave
vector, free from fitting parameters and "ad hoc" (the so called additional
boundary conditions-ABCs) assumptions. In the present paper, the former
analytical model is implemented in order to reproduce the centre-of-mass
quantization in a large range of quantum well thicknesses (5a_B < L < inf.).
The role of the dynamical transition layer at the well/barrier interfaces is
discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier
exciton eigenstates are computed, and compared with various theoretical models
with different degrees of accuracy. Exciton-polariton transmission spectra in
large quantum wells (L>> a_B) are computed and compared with experimental
results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The
sound agreement between theory and experiment allows to unambiguously assign
the exciton-polariton dips of the transmission spectrum to the pure states of
the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
Computational Nuclear Physics and Post Hartree-Fock Methods
We present a computational approach to infinite nuclear matter employing
Hartree-Fock theory, many-body perturbation theory and coupled cluster theory.
These lectures are closely linked with those of chapters 9, 10 and 11 and serve
as input for the correlation functions employed in Monte Carlo calculations in
chapter 9, the in-medium similarity renormalization group theory of dense
fermionic systems of chapter 10 and the Green's function approach in chapter
11. We provide extensive code examples and benchmark calculations, allowing
thereby an eventual reader to start writing her/his own codes. We start with an
object-oriented serial code and end with discussions on strategies for porting
the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An
advanced course in computational nuclear physics: Bridging the scales from
quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck,
Editor
Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets
Kepler Eclipsing Binary Stars. Vii. The Catalog Of Eclipsing Binaries Found In The Entire Kepler Data Set
The Kepler mission has provided unprecedented, nearly continuous photometric data of ~200,000 objects in the ~105 deg2 field of view (FOV) from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters, and analytical approximation fits for every known eclipsing binary system in the Kepler FOV. Using target pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e., targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth, and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler FOV that were not targets for observation, and these have been added to the catalog
- …
