324 research outputs found

    Proteasomal Degradation of TRIM5Ξ± during Retrovirus Restriction

    Get PDF
    The host protein TRIM5Ξ± inhibits retroviral infection at an early post-penetration stage by targeting the incoming viral capsid. While the detailed mechanism of restriction remains unclear, recent studies have implicated the activity of cellular proteasomes in the restriction of retroviral reverse transcription imposed by TRIM5Ξ±. Here, we show that TRIM5Ξ± is rapidly degraded upon encounter of a restriction-susceptible retroviral core. Inoculation of TRIM5Ξ±-expressing human 293T cells with a saturating level of HIV-1 particles resulted in accelerated degradation of the HIV-1-restrictive rhesus macaque TRIM5Ξ± protein but not the nonrestrictive human TRIM5Ξ± protein. Exposure of cells to HIV-1 also destabilized the owl monkey restriction factor TRIMCyp; this was prevented by addition of the inhibitor cyclosporin A and was not observed with an HIV-1 virus containing a mutation in the capsid protein that relieves restriction by TRIMCyp IVHIV. Likewise, human TRIM5Ξ± was rapidly degraded upon encounter of the restriction-sensitive N-tropic murine leukemia virus (N-MLV) but not the unrestricted B-MLV. Pretreatment of cells with proteasome inhibitors prevented the HIV-1-induced loss of both rhesus macaque TRIM5Ξ± and TRIMCyp proteins. We also detected degradation of endogenous TRIM5Ξ± in rhesus macaque cells following HIV-1 infection. We conclude that engagement of a restriction-sensitive retrovirus core results in TRIM5Ξ± degradation by a proteasome-dependent mechanism

    Performing the repentant lover in the courtroom: An analysis of Oscar Pistorius’ recreation of hegemonic masculinity

    Get PDF
    Michel Foucault (1980) presented social theorists with a consideration of power as existing everywhere. Furthermore, Jonathan Heaney (J Polit Power 6:355–362, 2013) recently asserted that emotions and power should be considered conceptual counterparts. I propose that what Foucault referred in terms of the omnipresence of power refers to its deeply social connection to emotions. One emotion, in particular, romantic love, has captured the sociological imagination not only at the level of personal relationships but also in connection with capitalism, as an ideology spurring consumption and influencing the construction of discourses and places. This chapter presents an analysis of the trial of Oscar Pistorius and the analysis plays on two levels: (a) firstly, through his courtroom interactions with members of the defence, and (b) through my eyes as a viewer, witnessing the trial on television. The televised South African courtroom becomes a space for the portrayal of a power-suffused masculine identity, which is emotionally constituted through emotional control and emotional release

    Construction and Testing of orfA +/- FIV Reporter Viruses

    Get PDF
    Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV), where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+) and (-) for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation

    Cyclophilin A interacts with diverse lentiviral capsids

    Get PDF
    BACKGROUND: The capsid (CA) protein of HIV-1 binds with high affinity to the host protein cyclophilin A (CypA). This binding positively affects some early stage of the viral life-cycle because prevention of binding either by drugs that occupy that active site of cyclophilin A, by mutation in HIV-1 CA, or RNAi that knocks down intracellular CypA level diminishes viral infectivity. The closely related lentivirus, SIVcpz also binds CypA, but it was thought that this interaction was limited to the HIV-1/SIVcpz lineage because other retroviruses failed to interact with CypA in a yeast two-hybrid assay. RESULTS: We find that diverse lentiviruses, FIV and SIVagmTAN also bind to CypA. Mutagenesis of FIV CA showed that an amino acid that is in a homologous position to the proline at amino acid 90 of HIV-1 CA is essential for FIV interactions with CypA. CONCLUSION: These results demonstrate that CypA binding to lentiviruses is more widespread than previously thought and suggest that this interaction is evolutionarily important for lentiviral infection

    Evolution of the Antiretroviral Restriction Factor TRIMCyp in Old World Primates

    Get PDF
    The retroviral restriction factor TRIMCyp, which is a fusion protein derived from the TRIM5 gene, blocks replication at a post-entry step. Among Old World primates, TRIMCyp has been found in four species of Asian macaques, but not in African monkeys. To further define the evolutionary origin of Old World TRIMCyp, we examined two species of baboons (genus Papio) and three additional macaque species, including M. sylvanus, which is the only macaque species found outside Asia, and represents the earliest diverging branch of the macaque lineage. None of four P. cynocephalus anubis, one P. hamadryas, and 36 M. sylvanus had either TRIMCyp mRNA or the genetic features required for its expression. M. sylvanus genomic sequences indicated that the lack of TRIMCyp in this species was not due to genetic homogeneity among specimens studied and revealed the existence of four TRIM5Ξ± alleles, all distinct from M. mulatta and Papio counterparts. Together with existing data on macaque evolution, our findings indicate that TRIMCyp evolved in the ancestors of Asian macaques approximately 5–6 million years before present (ybp), likely as a result of a retroviral threat. TRIMCyp then became fixed in the M. nemestrina lineage after it diverged from M. nigra, approximately 2 million ybp. The macaque lineage is unique among primates studied so far due to the presence and diversity of both TRIM5 and TRIMCyp restriction factors. Studies of these antiviral proteins may provide valuable information about natural antiviral mechanisms, and give further insight into the factors that shaped the evolution of macaque species

    Novel Escape Mutants Suggest an Extensive TRIM5Ξ± Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein

    Get PDF
    After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5Ξ±. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5Ξ± and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5Ξ± (rhTRIM5Ξ±)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer β€˜top’ surface of N-MLV CA, including the N-terminal Ξ²-hairpin, and map up to 29 Ao apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5Ξ±, indicating significant differences in the binding interaction between N-MLV and the two TRIM5Ξ±s, whereas three of the mutations result in dual sensitivity to Fv1n and Fv1b. Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5Ξ± binding

    The inhibition of FGF receptor 1 activity mediates sorafenib-induced antiproliferative effects in human mesothelioma tumor-initiating cells

    Get PDF
    Tumor-initiating cells (TICs), the subset of cells within tumors endowed with stem-like features, being highly resistant to conventional cytotoxic drugs, are the major cause of tumor relapse. The identification of molecules able to target TICs remains a significant challenge in cancer therapy. Using TIC-enriched cultures (MM1, MM3 and MM4), from 3 human malignant pleural mesotheliomas (MPM), we tested the effects of sorafenib on cell survival and the intracellular mechanisms involved. Sorafenib inhibited cell-cycle progression in all the TIC cultures, but only in MM3 and MM4 cells this effect was associated with induction of apoptosis via the down-regulation of Mcl-1. Although sorafenib inhibits the activity of several tyrosine kinases, its effects are mainly ascribed to Raf inhibition. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with EGF or bFGF causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt and STAT3 phosphorylation. These effects were significantly reduced by sorafenib in bFGF-treated cells, while a slight inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGFR inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. A different picture was observed in MM1 cells, which, releasing high levels of bFGF, showed an autocrine activation of FGFR1 and a constitutive phosphorylation/activation of MEK-ERK1/2. A powerful inhibitory response to sorafenib was observed in these cells, indirectly confirming the central role of sorafenib as FGFR inhibitor. These results suggest that bFGF signaling may impact antiproliferative response to sorafenib of MPM TICs, which is mainly mediated by a direct FGFR targeting

    Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish

    Get PDF
    Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets - adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described - all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5Ξ±. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC

    SUMO-Interacting Motifs of Human TRIM5Ξ± are Important for Antiviral Activity

    Get PDF
    Human TRIM5Ξ± potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains) but not others (the B- or NB-tropic strains) during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5Ξ± in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5Ξ± shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5Ξ± revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of the TRIM5Ξ± consensus SUMO conjugation site did not affect the antiviral activity of TRIM5Ξ± in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5Ξ± antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5Ξ± restriction of N-MLV. Our data suggest a novel aspect of TRIM5Ξ±-mediated restriction, in which the presence of intact SIMs in TRIM5Ξ±, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5Ξ± is mediated through the binding of its SIMs to SUMO-conjugated CA
    • …
    corecore