696 research outputs found

    The Physical Projector and Topological Quantum Field Theories: U(1) Chern-Simons Theory in 2+1 Dimensions

    Get PDF
    The recently proposed physical projector approach to the quantisation of gauge invariant systems is applied to the U(1) Chern-Simons theory in 2+1 dimensions as one of the simplest examples of a topological quantum field theory. The physical projector is explicitely demonstrated to be capable of effecting the required projection from the initially infinite number of degrees of freedom to the finite set of gauge invariant physical states whose properties are determined by the topology of the underlying manifold.Comment: 24 pages, no figures, plain LaTeX file; one more reference added. Final version to appear in Jour. Phys.

    Half-monopoles and half-vortices in the Yang-Mills theory

    Get PDF
    It is demonstrated that there are smooth Yang-Mills potentials which correspond to monopoles and vortices of one-half winding number. They are the generic configurations, in contrast to the integral winding number configurations like the 't Hooft-Polyakov monopole.Comment: 8 pages, 3 figures; references adde

    Finite Euler Hierarchies And Integrable Universal Equations

    Full text link
    Recent work on Euler hierarchies of field theory Lagrangians iteratively constructed {}from their successive equations of motion is briefly reviewed. On the one hand, a certain triality structure is described, relating arbitrary field theories, {\it classical\ts} topological field theories -- whose classical solutions span topological classes of manifolds -- and reparametrisation invariant theories -- generalising ordinary string and membrane theories. On the other hand, {\it finite} Euler hierarchies are constructed for all three classes of theories. These hierarchies terminate with {\it universal\ts} equations of motion, probably defining new integrable systems as they admit an infinity of Lagrangians. Speculations as to the possible relevance of these theories to quantum gravity are also suggested.Comment: (replaces previous unprintable version corrupted mailer) 13 p., (Plain TeX), DTP-92/3

    Hamiltonian Analysis of the Higgs Mechanism for Graviton

    Full text link
    In this paper we perform the canonical description of the Higgs mechanism for gravity and provide the Hamiltonian definition of the massive gravities.Comment: 18 page

    Relativistic Quarkonia from Anisotropic Lattices

    Full text link
    We report on new results for the spectrum of quarkonia using a fully relativistic approach on anisotropic lattices with quark masses in the range from strange to bottom. A fine temporal discretisation also enables us to resolve excitations high above the ground state. In particular we studied the mass dependence and scaling of hybrid states.Comment: 4 pages, 5 figures. Lattice 2000 (Heavy Quark Physics

    Improved Determination of the Mass of the 1+1^{-+} Light Hybrid Meson From QCD Sum Rules

    Get PDF
    We calculate the next-to-leading order (NLO) αs\alpha_s-corrections to the contributions of the condensates and 2^2 in the current-current correlator of the hybrid current g\barq(x)\gamma_{\nu}iF_{\mu\nu}^aT^aq(x) using the external field method in Feynman gauge. After incorporating these NLO contributions into the Laplace sum-rules, the mass of the JPCJ^{PC}=1+1^{-+} light hybrid meson is recalculated using the QCD sum rule approach. We find that the sum rules exhibit enhanced stability when the NLO αs\alpha_s-corrections are included in the sum rule analysis, resulting in a 1+1^{-+} light hybrid meson mass of approximately 1.6 GeV.Comment: revtex4, 10 pages, 7 eps figures embedded in manuscrip

    The electromagnetic effects in isospin symmetry breakings of q{\bar q} systems

    Full text link
    The isospin symmetry breakings of q{\bar q} are investigated in the QCD sum rule method. The electromagnetic effects are evaluated following the procedure requiring that the electromagnetic effects for charged meson be gauge invariant. We find that the electromagnetic effects are also dominant in the isospin violations of rho meson, which have been shown to be the case in the mass splittings of pions. The numerical results for the difference of pion decay constants and the masses of rho mesons are presented, which are consistent with the data.Comment: To appear in Phys. Rev. D (1997

    On the quantum mechanics of M(atrix) theory

    Get PDF
    We present a study of M(atrix) theory from a purely canonical viewpoint. In particular, we identify free particle asymptotic states of the model corresponding to the supergraviton multiplet of eleven dimensional supergravity. These states have a natural interpretation as excitations in the flat directions of the matrix model potential. Furthermore, we provide the split of the matrix model Hamiltonian into a free part describing the free propagation of these particle states along with the interaction Hamiltonian describing their interactions. Elementary quantum mechanical perturbation theory then yields an effective potential for these particles as an expansion in their inverse separation. Remarkably we find that the leading velocity independent terms of the effective potential cancel in agreement with the fact that there is no force between stationary D0 branes. The scheme we present provides a framework in which one can perturbatively compute the M(atrix) theory result for the eleven dimensional supergraviton S matrix.Comment: 28 pages, Latex2

    Linearisation of Universal Field Equations

    Get PDF
    The Universal Field Equations, recently constructed as examples of higher dimensional dynamical systems which admit an infinity of inequivalent Lagrangians are shown to be linearised by a Legendre transformation. This establishes the conjecture that these equations describe integrable systems. While this construction is implicit in general, there exists a large class of solutions for which an explicit form may be written.Comment: 11pp., DTP-92/47, NI-92/01

    Finite to infinite steady state solutions, bifurcations of an integro-differential equation

    Get PDF
    We consider a bistable integral equation which governs the stationary solutions of a convolution model of solid--solid phase transitions on a circle. We study the bifurcations of the set of the stationary solutions as the diffusion coefficient is varied to examine the transition from an infinite number of steady states to three for the continuum limit of the semi--discretised system. We show how the symmetry of the problem is responsible for the generation and stabilisation of equilibria and comment on the puzzling connection between continuity and stability that exists in this problem
    corecore