85 research outputs found

    Localization of the Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer membrane is mediated by an internal targeting signal and the TOM complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Carnation Italian ringspot virus </it>(CIRV) is a positive-strand RNA virus that causes massive structural alterations of mitochondria in infected host cells, the most conspicuous being the formation of numerous internal vesicles/spherules that are derived from the mitochondrial outer membrane and serve as the sites for viral RNA replication. While the membrane-bound components of the CIRV replication complex, including a 36-kD RNA-binding protein (p36), are known to be essential for these changes in mitochondrial morphology and are relatively well characterized in terms of their roles in nascent viral RNA synthesis, how these proteins are specifically targeted and inserted into mitochondria is poorly defined.</p> <p>Results</p> <p>Here we report on the molecular signal responsible for sorting p36 to the mitochondrial outer membrane. Using a combination of gain-of-function assays with portions of p36 fused to reporter proteins and domain-swapping assays with p36 and another closely-related viral RNA-binding protein, p33, that sorts specifically to the peroxisomal boundary membrane, we show that the mitochondrial targeting information in p36 resides within its two transmembrane domains (TMDs) and intervening hydrophilic loop sequence. Comprehensive mutational analysis of these regions in p36 revealed that the primary targeting determinants are the moderate hydrophobicity of both TMDs and the positively-charged face of an amphipathic helix within the intervening loop sequence. We show also using bimolecular fluorescence complementation (BiFC) that p36 interacts with certain components of the translocase complex in the mitochondrial outer membrane (TOM), but not with the sorting and assembly machinery (SAM).</p> <p>Conclusion</p> <p>Our results provide insight to how viruses, such as CIRV, exploit specific host-cell protein sorting pathways to facilitate their replication. The characterization of the targeting and insertion of p36 into the mitochondrial outer membrane also sheds light on the mechanisms involved in sorting of host-cell membrane proteins to mitochondria, a process that has been largely unexplored in plants.</p

    New Insights Into Sunflower (Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution

    Get PDF
    Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.España MINECO y FEDER Projects AGL2014- 53537-R y AGL2017-83449-

    Protein–Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery

    Get PDF
    The endosomal sorting complex required for transport (ESCRT) consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB) biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that the Arabidopsis ESCRT interactome possesses a number of protein–protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional role(s) as part of the ESCRT machinery in Arabidopsis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants

    Distinct Pathways Mediate the Sorting of Tail-Anchored Proteins to the Plastid Outer Envelope

    Get PDF
    Background: Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. Methodology/Principal Findings: Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. Conclusions/Significance: Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA proteins to their proper intracellular locations in general

    Identification of a New Class of Lipid Droplet-Associated Proteins in Plants

    Get PDF
    Article on the identification of a new class of lipid droplet-associated proteins in plants

    LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis

    Get PDF
    Abstract Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes
    corecore