22 research outputs found

    Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains

    Get PDF
    This chapter presents the application of the boundary element method to high-frequency Helmholtz problems in unbounded domains. Based on a standard combined integral equation approach for sound-hard scattering problems we discuss the discretization, preconditioning and fast evaluation of the involved operators. As engineering problem, the propagation of high-intensity focused ultrasound fields into the human rib cage will be considered. Throughout this chapter we present code snippets using the open-source Python boundary element software BEM++ to demonstrate the implementation

    A fast boundary element method for the scattering analysis of high-intensity focused ultrasound

    Get PDF
    High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis

    Boundary integral formulations for acoustic modelling of high-contrast media

    Get PDF
    The boundary element method is an efficient algorithm for simulating acoustic propagation through homogeneous objects embedded in free space. The conditioning of the system matrix strongly depends on physical parameters such as density, wavespeed and frequency. In particular, high contrast in density and wavespeed across a material interface leads to an ill-conditioned discretisation matrix. Therefore, the convergence of Krylov methods to solve the linear system is slow. Here, specialised boundary integral formulations are designed for the case of acoustic scattering at high-contrast media. The eigenvalues of the resulting system matrix accumulate at two points in the complex plane that depend on the density ratio and stay away from zero. The spectral analysis of the CalderĂłn preconditioned PMCHWT formulation yields a single accumulation point. Benchmark simulations demonstrate the computational efficiency of the high-contrast Neumann formulation for scattering at high-contrast media

    Benchmarking preconditioned boundary integral formulations for acoustics

    Full text link
    The boundary element method (BEM) is an efficient numerical method for simulating harmonic wave scattering. It uses boundary integral formulations of the Helmholtz equation at the interfaces of piecewise homogeneous domains. The discretisation of its weak formulation leads to a dense system of linear equations, which is typically solved with an iterative linear method such as GMRES. The application of BEM to simulating wave scattering at large-scale geometries is only feasible when compression and preconditioning techniques reduce the computational footprint. Furthermore, many different boundary integral equations exist that solve the same boundary value problem. The choice of preconditioner and boundary integral formulation is often optimised for a specific configuration, depending on the geometry, material characteristics, and driving frequency. On the one hand, the design flexibility for the BEM can lead to fast and accurate schemes. On the other hand, efficient and robust algorithms are difficult to achieve without expert knowledge of the BEM intricacies. This study surveys the design of boundary integral formulations for acoustics and their acceleration with operator preconditioners. Extensive benchmarking provide valuable information on the computational characteristics of several hundred different models for multiple scattering and transmission of acoustic wave fields

    Benchmarking preconditioned boundary integral formulations for acoustics.

    Get PDF
    The boundary element method (BEM) is an efficient numerical method for simulating harmonic wave propagation. It uses boundary integral formulations of the Helmholtz equation at the interfaces of piecewise homogeneous domains. The discretization of its weak formulation leads to a dense system of linear equations, which is typically solved with an iterative linear method such as GMRES. The application of BEM to simulating wave propagation through large-scale geometries is only feasible when compression and preconditioning techniques reduce the computational footprint. Furthermore, many different boundary integral equations exist that solve the same boundary value problem. The choice of preconditioner and boundary integral formulation is often optimized for a specific configuration, depending on the geometry, material characteristics, and driving frequency. On the one hand, the design flexibility for the BEM can lead to fast and accurate schemes. On the other hand, efficient and robust algorithms are difficult to achieve without expert knowledge of the BEM intricacies. This study surveys the design of boundary integral formulations for acoustics and their acceleration with operator preconditioners. Extensive benchmarks provide valuable information on the computational characteristics of several hundred different models for multiple reflection and transmission of acoustic waves

    Frequency-robust preconditioning of boundary integral equations for acoustic transmission

    Full text link
    The scattering and transmission of harmonic acoustic waves at a penetrable material are commonly modelled by a set of Helmholtz equations. This system of partial differential equations can be rewritten into boundary integral equations defined at the surface of the objects and solved with the boundary element method (BEM). High frequencies or geometrical details require a fine surface mesh, which increases the number of degrees of freedom in the weak formulation. Then, matrix compression techniques need to be combined with iterative linear solvers to limit the computational footprint. Moreover, the convergence of the iterative linear solvers often depends on the frequency of the wave field and the objects' characteristic size. Here, the robust PMCHWT formulation is used to solve the acoustic transmission problem. An operator preconditioner based on on-surface radiation conditions (OSRC) is designed that yields frequency-robust convergence characteristics. Computational benchmarks compare the performance of this novel preconditioned formulation with other preconditioners and boundary integral formulations. The OSRC preconditioned PMCHWT formulation effectively simulates large-scale problems of engineering interest, such as focused ultrasound treatment of osteoid osteoma

    Metamaterial bricks and quantization of meta-surfaces

    Get PDF
    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators

    The PARAChute project: remote monitoring of posture and gait for fall prevention

    Get PDF
    Falls in the elderly are a major public health problem due to both their frequency and their medical and social consequences. In France alone, more than two million people aged over 65 years old fall each year, leading to more than 9 000 deaths, in particular in those over 75 years old (more than 8 000 deaths). This paper describes the PARAChute project, which aims to develop a methodology that will enable the detection of an increased risk of falling in community-dwelling elderly. The methods used for a remote noninvasive assessment for static and dynamic balance assessments and gait analysis are described. The final result of the project has been the development of an algorithm for movement detection during gait and a balance signature extracted from a force plate. A multicentre longitudinal evaluation of balance has commenced in order to validate the methodologies and technologies developed in the project

    A fast full-wave solver for calculating ultrasound propagation in the body

    Get PDF
    Therapeutic ultrasound is a promising non-invasive method for inducing various beneficial biological effects in the human body. In cancer treatment applications, high-power ultrasound is focused at a target tissue volume to ablate the malignant tumour. The success of the procedure depends on the ability to accurately focus ultrasound and destroy the target tissue volume through coagulative necrosis whilst preserving the surrounding healthy tissue. Patient-specific treatment planning strategies are therefore being developed to increase the efficacy of such therapies, while reducing any damage to healthy tissue. These strategies require to use high-performance computing methods to solve ultrasound wave propagation in the body quickly and accurately. For realistic clinical scenarios, all numerical methods which employ volumetric meshes require several hours or days to solve the full-wave propagation on a computer cluster. The boundary element method (BEM) is an efficient approach for modelling the wave field because only the boundaries of the hard and soft tissue regions require discretisation. This paper presents a multiple-domain BEM formulation with a novel preconditioner for solving the Helmholtz transmission problem (HTP). This new formulation is efficient at high-frequencies and where high-contrast materials are present. Numerical experiments are performed to solve the HTP in multiple domains comprising: (i) human ribs, an idealised abdominal fat layer and liver tissue, (ii) a human kidney with a perinephric fat layer, exposed to the acoustic field generated by a high-intensity focused ultrasound (HIFU) array transducer. The time required to solve the equations associated with these problems on a single workstation is of the order of minutes. These results demonstrate the great potential of this new BEM formulation for accurately and quickly solving ultrasound wave propagation problems in large anatomical domains which is essential for developing treatment planning strategies
    corecore