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High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive

treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the

accurate focusing of the acoustic field inside a ribcage. Computational methods can play an impor-

tant role in the patient-specific planning of these transcostal HIFU treatments. This requires the

accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM)

is an effective approach for this purpose because only the boundaries of the ribs have to be discre-

tized instead of the standard approach to model the entire volume around the ribcage. This paper

combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency

range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton–Miller

formulation is used in combination with preconditioning and matrix compression techniques. In

particular, quick convergence is achieved with the operator preconditioner that has been designed

with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-

Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model

demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4932166]
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I. INTRODUCTION

The liver is a common site of occurrence for tumors,1,2

and the incidence of liver cancer is on the rise in Europe.3

Hepatocellular carcinoma, the most common form of liver

cancer, is a growing global health problem as it is the third

most common cause of cancer related death4 with increased

incidence rates worldwide.5

The first choice of therapy for liver cancer is either sur-

gical resection or transplantation.2,6 The suitability of a

patient for surgical resection is highly dependent on the size,

location, and number of tumors.2,7 The prognosis for patients

having undergone a resection remains poor, often due to the

fact that other tumors may have been present during surgery

but remained undetected due to their small size.2,8

Moreover, the risks associated with conventional surgical

treatments render them unsuitable for the majority of

patients: resection is an invasive procedure that involves the

loss of large amounts of blood. Thus the ability to ablate

tumors accurately and non-invasively within the liver will

have significant clinical impact.

High-intensity focused ultrasound (HIFU) is a medical

procedure that uses high-amplitude ultrasound to heat and

ablate a localized region of tissue. High energy may be accu-

rately targeted within a well-defined and predetermined vol-

ume, and tissue destruction may be achieved without

damaging the overlying tissue.9 The feasibility of HIFU for

the treatment of a range of different cancers, including those

of the liver, has been demonstrated.10,11 As a non-invasive

focused therapy, HIFU offers significant advantages over

surgical resection, and it has been shown that it may serve as

a promising locally ablative technique for the treatment of

hepatocellular carcinoma.12,13 Despite this, there are a num-

ber of significant challenges that currently hinder its more

widespread clinical application. For instance, rib bone both

absorbs and reflects ultrasound strongly. Hence a common

side effect of focusing ultrasound in regions located behind

the ribcage is the overheating of bone and surrounding tis-

sue, which can lead to skin burns.14,15 Furthermore, the pres-

ence of ribs can lead to aberrations at the focal region due to

effects of diffraction,16 which can lead to deterioration of the

focusing effect of the incident acoustic field. Aubry et al.17

have stated that one of the minimal technical specifications

of a HIFU system for the treatment of liver tumors should be

to transmit energy in between, below, or through the ribs

without damaging the ribs or causing a skin burn. Thisa)Electronic mail: e.wout@ucl.ac.uk
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requirement is likely to rely on a patient-specific treatment

planning protocol that features numerical modeling to pre-

dict and optimize the acoustic field near a ribcage.

Different soft tissue types in the human body tend to

bear similar acoustic properties. The speed of propagation of

longitudinal waves is generally comparable in different soft

tissues and is 1500 m/s approximately.18 The same is true of

the density,18 which is around 1000 kg/m3. Whilst it is

known that soft tissue heterogeneities can lead to aberrations

of the focus,19 a first step toward treating the problem of

acoustic scattering by the ribcage is to consider the ribs to be

immersed in an infinite homogeneous medium.

There have been several attempts to model HIFU fields

in the presence of ribs, but full-wave three-dimensional (3D)

modeling of ultrasound propagation in the presence of bone

still presents substantial computational challenges. As a

result of the large domain dimensions at the MHz frequen-

cies required for transcostal HIFU, many models have relied

on simplified shadowing techniques.15,16,20,21 Whilst these

algorithms, such as ray tracing, may replicate features of

wave propagation during transcostal HIFU treatments, they

do not accurately address the actual scattering mechanisms

involved in complex 3D structures and are likely to be of

limited use in clinical treatment planning applications.

Finite-difference time-domain (FDTD) schemes have

been used in transcostal HIFU simulations.22,23 Nevertheless,

owing to the large grid sizes resulting from the discretization

of the entire region around the ribcage, these studies have

been confined to 2D models. Computationally efficient

approaches, such as k-space pseudospectral methods have

shown promise for modeling acoustic fields in heterogeneous

media.19,24–26 Whilst these methods can deal somewhat with

weak inhomogeneities in the propagating medium, an increas-

ingly finer computational grid is required at an interface of

soft tissue and bone.19

G�elat et al.27 proposed a boundary element method

(BEM) approach to model the scattering of a HIFU field by

human ribs. In BEM, the exterior scattering problem is refor-

mulated into an integral equation on the surface of the

object. This allows for accurate discretization of the bound-

ary conditions at the interface and a natural representation of

unbounded regions without truncation of the computational

domain. The dimensional reduction, in combination with

fast computational algorithms, results in efficient simulation

of large-scale problems. Being based on Green’s function

representations, the BEM is devoid of numerical dispersion

and dissipation effects. Furthermore, it is applicable for both

reflecting and absorbing boundary conditions on the ribs.

The BEM is therefore particularly suited to transcostal HIFU

simulations. Whilst the BEM approach is linear and does not

account for effects due to nonlinear propagation in tissue, it

has the advantage of modeling the scattering of an acoustic

field by arbitrary 3D rib topologies efficiently.

The capability of the BEM as a forward model within an

optimization method for the design of a transducer array for

transcostal HIFU applications has already been demon-

strated.27–29 This algorithm uses the Burton–Miller formula-

tion, which has the advantage of being devoid of spurious

resonance modes.30 However, the efficiency of the

collocation discretization deteriorates for large-scale prob-

lems, where the wavelength is small compared to the size of

the object. Frequencies in the MHz range are necessary for

transcostal HIFU applications; this leads to substantial

requirements on computational resources in terms of both

storage and time. The scattering analysis on the ribcage with

the BEM has been observed to be the computational bottle-

neck of the optimization algorithm for the design algorithm

of HIFU transducers. To alleviate the computational require-

ments, a dedicated fast algorithm that extends the applicabil-

ity of BEM to high-frequency acoustic scattering will be

proposed in this paper. Specifically, the method is based on a

Galerkin discretization in combination with preconditioning

and compression techniques.

A main reason for the deterioration in efficiency with

increasing frequency is the differentiating property of the

hypersingular operator within the Burton–Miller formulation.

A regularizing preconditioner will be used that results in a

second-kind Fredholm integral equation and thus rapid con-

vergence. The preconditioner is based on a high-frequency

approximation of the Neumann-to-Dirichlet map with on-

surface radiation conditions (OSRC).31,32 The discretization

of this operator preconditioner results in a sparse matrix and

therefore relatively little overhead during each iteration.

Moreover, fast algorithms for the matrix-vector multiplication

such as H-matrix compression techniques and fast multipole

methods (FMM) can straightforwardly be combined with the

preconditioner.33 In this study, the H-matrix technique has

been used to compress the storage of the matrices arising

from the Galerkin discretization. This algorithm is very effi-

cient for the frequency range of typical HIFU configurations

and can, once assembled, be used efficiently for multiple

right-hand-side vectors. These characteristics make it a feasi-

ble method for the future goal of optimizing HIFU transducer

arrays with the BEM as a forward model. For very high fre-

quencies though, specialized FMM techniques will probably

be the preferred choice.34 Finally, the open-source package

BEMþþ has been used as an implementation platform, which

hasH-matrix compression functionality.35

This paper starts with a presentation of the model for-

mulation in Sec. II, including the boundary integral represen-

tation and the model for HIFU fields from multi-element

transducer arrays. The algorithms to improve the efficiency

of the BEM will be explained in Sec. III, in particular, the

OSRC preconditioning and H-matrix compression techni-

ques. Numerical simulations on perfectly rigid ribs

immersed in water will be described in Sec. IV. This case is

particularly relevant to HIFU experimental ex vivo studies

involving ribs.23 It is also applicable to the characterisation

of HIFU fields in the presence of rib phantoms immersed in

water. The experimental results in this paper demonstrate the

convergence improvement of the preconditioner, the com-

pression rates of the matrices, and its feasibility for the simu-

lation of transcostal HIFU techniques.

II. MODEL FORMULATION

The aim of this paper is to develop an efficient computa-

tional method for simulation of transcostal HIFU modalities.
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Of special interest is the accurate modeling of the acoustic

scattering on ribcages for which a model of a rigid body

immersed in an infinite fluid will be used. To this end, con-

sider an object representing a part of a ribcage residing in a

homogeneous lossless medium for which the physical pa-

rameters of water will be used. Although ribs are both

absorbing and reflective, they are assumed to be perfectly

rigid in this paper. It should be noted that the BEM naturally

allows for an extension to absorbing objects. The HIFU

transducers typically operate in a small frequency band in

the MHz range. This allows for the use of time-harmonic

waves with a fixed wavelength.

A. Exterior wave formulation

The propagation of acoustic waves in homogeneous

media can be described by a system of the Helmholtz equa-

tion and boundary conditions. Let us consider a geometry

with a bounded domain Xint � R3 representing a scatterer

and an exterior domain Xext ¼ R3nXint . The interior domain

can be nonconvex and disconnected, but its boundary,

denoted by C ¼ @Xint, is assumed to be Lipschitz continu-

ous. The unit normal n̂ on C is outward pointing, i.e., from

Xint toward Xext. The wavenumber of the time-harmonic

acoustic wave is given by k ¼ 2p=k, where k denotes the

wavelength. For a rigid object, the scattered field pressure p
of an acoustic wave from an excitation pinc can be modeled

with the Helmholtz exterior boundary value problem

Dpþ k2p ¼ 0 in Xext;

@n pþ pincð ÞjC ¼ 0 on C;

limjxj!1jxj rp � x

jxj � ikp

� �
¼ 0;

8>>>><
>>>>:

(1)

where @n denotes the normal derivative on C and i the imagi-

nary unit (i2 ¼ �1). The boundary condition on C states that

the normal derivative of the total field is zero, which relates

to a sound-hard object. The last equation is the Sommerfeld

radiation condition that describes the outgoing waves of the

unbounded domain.

B. Boundary integral formulation

The Helmholtz system [Eq. (1)] that describes the wave

propagation in the exterior domain has a fundamental solu-

tion and can therefore be reformulated into a boundary inte-

gral equation. Thus instead of solving for a volumetric

pressure field, the model is solved for a surface potential.

This potential on the scattering surface uniquely determines

the scattered field at any point in the exterior domain. The

design of the boundary integral formulation typically follows

trace theorems. Here a standard approach and nomenclature

are used.33 The formulations are introduced without mathe-

matical rigor; definitions of all operators used in this paper

can be found in standard textbooks on BEM.36,37

Instead of solving for the scattered field pressure p, the

boundary model is written in terms of the unknown surface

potential

u ¼ ðpþ pincÞjC; (2)

representing the restriction of the total pressure field to the

surface. The pressure of the wave field scattered into the

exterior is given by p ¼ DðuÞ, where the double-layer

potential operator D is defined as

ðDuÞðxÞ ¼
ð

C
@nðyÞGðx; yÞuðyÞ dCðyÞ; x 2 Xext; (3)

where the Green’s function

G x; yð Þ ¼
1

4p
eikjx�yj

jx� yj ; x 6¼ y (4)

is the fundamental solution of the 3D Helmholtz system [Eq.

(1)]. Notice that the double-layer potential operator maps

from the potential on the surface to the pressure field in the

exterior volume. Now the boundary integral formulation can

be obtained with the use of the Dirichlet and Neumann traces

of the double-layer potential operator in combination with

the boundary conditions. The two different traces result in

two independent boundary integral equations, i.e.,

1

2
I þM

� �
u ¼ �pincjC; (5a)

Du ¼ �@npincjC; (5b)

where I denotes the identity operator and M and D the

double-layer and hypersingular boundary operators, respec-

tively, given by

ðMuÞðxÞ ¼ �
ð

C
@nðyÞGðx; yÞuðyÞ dCðyÞ; x 2 C; (6a)

ðDuÞðxÞ ¼ �@nðxÞ

ð
C
@nðyÞGðx; yÞuðyÞ dCðyÞ; x 2 C:

(6b)

The two boundary integral Eqs. (5a) and (5b) can be used

independently to solve the scattering problem. However,

both have a null-space consisting of resonance modes that

will spoil the computational method with spurious solu-

tions. This can be prevented by considering a linear combi-

nation of the equations. That is, for g 2 C denoting a

coupling parameter with =ðgÞ 6¼ 0, the Burton-Miller for-

mulation reads

1

2
I þM þ gD

� �
u ¼ �pincjC � g@npincjC on C; (7)

which has a unique solution.30 A standard choice of g ¼ �i=k
has been used throughout.38

C. Boundary element discretization

A Galerkin method will be used for the numerical dis-

cretization of the boundary integral Eq. (7). The surface C is
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partitioned into flat triangular elements. The discrete weak

formulation is given by

XN

j¼1

aj /k;
1

2
IþMþgD

� �
/j

� �

¼�h/k;pincjCi�gh/k;@npincjCi for k¼ 1;2;3;…;N;

(8)

where aj 2 C denote the unknown coefficients and /j the basis

functions. The inner product h�; �i is given by the standard L2

inner product. The test and basis functions are given by linear

piecewise continuous functions on the triangular surface mesh.

D. Incident HIFU field

The Burton–Miller formulation [Eq. (8)] requires the

evaluation of the Cauchy data ðpincjC; @npincjCÞ as excitation

for the scattering problem. That is, the pressure field and its

normal gradient at the scatterer surface have to be specified.

For the accurate simulation of HIFU techniques in medical

technology, this requires the modeling of ultrasound trans-

ducers. These transducers can be designed such that the trans-

mitted acoustic field is targeted in a prescribed region. In the

case of transcostal HIFU treatment, the use of a multi-element

array of ultrasound transducers has significant advantages

over single-element devices because of their beam-forming

capabilities.39 It is likely that the configuration of the multi-

element transducer array has to be optimized for each clinical

treatment separately. Here a configuration is being used that

has already been optimized for transcostal HIFU application

for the same ribcage geometry.27 More precisely, the trans-

ducer array is part of a spherical bowl with a radius of 18 cm.

The 256 piston elements are located on a spherical strip with

4 cm aperture diameter and 16 cm array diameter around the

negative z axis. All piston elements are assumed to be of the

same characteristics. Each piston element is modeled as a disk

facing toward the focal point, which is located at the global

origin by convention, see Fig. 1.

The pressure field from each piston element is approxi-

mated with a numerical quadrature procedure on the disk.

Furthermore, for typical configurations, the distance between

the transducer array and focal point is large compared to the

wavelength. The pressure field from each source can there-

fore be modeled as the far-field representation of a spherical

point source, which is proportional to the fundamental solu-

tion [Eq. (4)]. Each source point transmits a field with a pre-

scribed frequency, denoted by f in Hz. The wavenumber is

thus given by k ¼ 2pf=c where c denotes the speed of sound

in the exterior medium, e.g., 1500 m/s in the case of water.

Summarizing, the incident HIFU pressure field of a trans-

ducer with amplitude Atd with a number of Npiston pistons of

amplitude Am is modeled as

pincðxÞ ¼ Atd

XNpiston

m¼1

Am

XNquad;m

n¼1

wmnGðx; rmnÞ;

@npincðxÞ ¼ Atd

XNpiston

m¼1

Am

XNquad;m

n¼1

wmnrGðx; rmnÞ � nðxÞ; (9)

where rmn and wmn denote the location and weight of a quad-

rature point, with
PNquad;m

n¼1 wmn ¼ 1 for each piston element

m. The quadrature procedure on each piston element is given

by a square grid intersected by the disk with equal weights

for each point. The amplitudes of the pistons are given by

Am ¼ fpa2 for m ¼ 1; 2;…;Npiston; (10)

where a denotes the radius of the piston elements, typically

3 mm. The amplitude of the transducer is given by

Atd ¼ 2piq; (11)

where q denotes the mass-density of the exterior medium,

e.g., 1000 kg/m3 for water. For typical simulations, the total

number of computational source elements, i.e., the number

of pistons times the number of quadrature points, is around

40 000 points.

III. FAST ALGORITHMS FOR HIGH-FREQUENCY
SCATTERING

The Burton-Miller formulation [Eq. (7)] is the preferred

model equation compared to either the double-layer or the

hypersingular integral equation because it has a unique solu-

tion and is devoid of spurious modes due to resonances. On

the other hand, solving the Burton–Miller formulation with

an iterative linear solver such as GMRES requires two

matrix-vector multiplications at each iteration and the con-

vergence can be slow. The strongly singular and non-

compact hypersingular boundary operator within the

FIG. 1. (Color online) The model HIFU configuration of a multi-element

array of transducers. The transducer array is a spherical strip with 256 piston

elements modeled by disks facing to the focal point at the global origin. The

ultrasound rays (depicted by the dotted lines) from each piston element

focus inside the ribcage. A coarse mesh is visualized on the surface of the

ribs.
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Burton–Miller formulation results in an unfavorable spec-

trum because no eigenvalue clustering can be expected for

these kinds of operators. The convergence of the linear

solver for the standard Burton–Miller formulation is there-

fore slow, or, even worse, the algorithm might not converge

at all within a reasonable amount of iterations. This is espe-

cially the case at high frequencies, where the wavelength is

small compared to the dimension of the scatterer. High-

frequency preconditioners can improve the convergence

significantly when they are specifically designed for the

particular application.

Next to reducing the number of iterations in the linear

solver with preconditioning, the efficiency of the BEM heav-

ily depends on the assembly and storage of the discretization

matrices as well. Because the matrices are fully populated, a

dense storage requires in excess of hundreds of GB of mem-

ory for large-scale scattering problems. For standard com-

puting facilities these simulations are therefore only feasible

when the matrices are compressed and stored in a data-

sparse format.

A. Operator preconditioning

The Burton–Miller formulation [Eq. (7)] is a linear com-

bination of a double-layer and a hypersingular boundary op-

erator. The hypersingular operator D is an unbounded

operator that reduces the regularity of the surface potential.

This causes an unfavorable spectrum and therefore slow con-

vergence of the iterative linear solver. The basic idea of pre-

conditioning is to solve a system V�1Du ¼ V�1f instead of

Du ¼ f where the operator V has to be designed such that

V�1D has a favorable spectrum compared to D and Vx¼ b
relatively easy to solve. In practice, preconditioners are

designed according to approximate information on the origi-

nal operator D. Where the focus of linear preconditioning is

on the discrete system, operator preconditioning uses infor-

mation on the underlying integro-differential equation.40

These preconditioners typically take the form of boundary

operators that approximate the inverse of the continuous

model and can achieve beneficial mapping properties

between the integro-differential operators. A major advant-

age of operator preconditioning is its matrix-free design that

allows for a seamless combination with acceleration algo-

rithms such as compression techniques. In this paper, the

design of the preconditioner will be performed with OSRC

techniques.33 Although not stated explicitly, all other opera-

tors are mass-preconditioned,41 that is, preconditioned with

the discretized identity operator.

1. OSRC preconditioner

One of the fundaments of the design of OSRC

preconditioners is the use of the Neumann-to-Dirichlet

(NtD) map. The corresponding pseudodifferential opera-

tor VNtD maps the normal gradient of the pressure field

restricted to the surface to the pressure field on the sur-

face, that is,

VNtDð@npjCÞ ¼ pjC; (12)

where the pressure field satisfies the exterior Helmholtz

model [Eq. (1)]. An important property of the exact NtD

map is the relation

1

2
I þM � VNtDD ¼ I on C: (13)

This demonstrates that the exact NtD map is a perfect pre-

conditioner for the Burton–Miller formulation because it

yields the identity operator. However, no closed-form

expression for the exact NtD map is available, and numeri-

cally computing it is as expensive as solving the original

Burton–Miller formulation. Instead a high-frequency

approximation of the NtD map will be used as precondi-

tioner. This is effective for transcostal HIFU applications

because they typically operate in the MHz range, and the

wavelength is therefore small compared to ribcages. The

design of the high-frequency approximation follows the

OSRC method,31,32 where only the dominant terms of the

NtD map in the high-frequency regime are used. The expres-

sion of the OSRC preconditioner, denoted by ~V , is given by

the pseudodifferential operator

~V ¼ 1

ik
1þ DC

k2
�

� ��1=2

; (14)

where k� ¼ k þ i� for � > 0 denotes a damped wavenumber

and DC denotes the Laplace–Beltrami operator. The inclusion

of damping prevents the occurrence of singularities. A typical

choice of damping factor is � ¼ 0:4k1=3R�2=3 where R denotes

the radius of the scatterer.33 The preconditioner ~V is a regula-

rizing operator and is included in the Burton–Miller formula-

tion as g ¼ � ~V . The OSRC-preconditioned Burton–Miller

formulation then reads

1

2
I þM � ~VD

� �
u ¼ �pincjC þ ~V@npincjC on C:

(15)

The preconditioned equation has a unique solution and is a

second-kind Fredholm integral equation.33 Furthermore it

satisfies the correct mapping properties for operator

preconditioning.32

2. Discretization of the preconditioner

The OSRC preconditioner for the Burton–Miller formu-

lation has been designed on a continuous level and resulted

in the operator ~V defined in Eq. (14). The pseudodifferential

character of this operator does not allow for a straightfor-

ward discretization to obtain a preconditioner in the form of

a matrix. Instead a discretized version of the operation ~Vf
for a known function f will be developed; this is sufficient

for the application of the preconditioner in an iterative linear

solver.

To obtain a discrete formulation of the OSRC precondi-

tioner, the square-root operation will be approximated with a

Pad�e series expansion.42 That is, the equation u ¼ ~Vf is

equivalent to
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ik 1þ DC

k2
�

� �
u ¼ 1þ DC

k2
�

� �1=2

f

�C0f þ
XNPad�e

p¼1

ap

k2
�

DC 1þ
bp

k2
�

DC

 !�1

f

(16)

for complex-valued coefficients C0; ap; bp. These coefficients

are computed with a branch cut with nonzero angle h
because this increases the accuracy of the Pad�e approxima-

tion for the OSRC preconditioner.43 The preconditioner step

within the iterative linear solver is given by u ¼ ~Vf for given

vector f and can be expressed in the following sequential

way:

1þ
bp

k2
�

DC

 !
vp ¼ f for p ¼ 1; 2;…;NPad�e; (17a)

g ¼ C0f þ 1

k2
�

DC

XNPad�e

p¼1

apvp; (17b)

1þ 1

k2
�

DC

� �
u ¼ 1

ik
g: (17c)

First, Np Helmholtz equations have to be solved with

complex-valued wavenumbers. Then these solutions vp are

combined as a Pad�e series. Finally, another Helmholtz equa-

tion with complex-valued wavenumber has to be solved.

This set of NPad�e þ 1 complex Helmholtz equations can read-

ily be discretized with the same Galerkin method as used for

the Burton–Miller formulation. The local character of the

Laplace–Beltrami operator yields sparse matrices. A sparse

LU factorization will be computed and used to solve the set

of Helmholtz systems within each iteration of the linear

solver of the preconditioned Burton–Miller formulation. The

sparsity of the preconditioner yields very efficient solution

algorithms compared to the dense model equation and thus

little overhead in both computation time and storage.

B. Compressed storage of matrix

The boundary integral operators of the Burton–Miller

formulation are non-local operators and their Galerkin dis-

cretization therefore result in fully populated matrices. The

storage of these dense matrices requires memory for OðN2Þ
floating-point numbers, where N denotes the number of spa-

tial degrees of freedom. For large-scale structures and a high

frequency f, the BEM requires Oðf 2Þ surface elements to

represent the wave propagation and thus a storage of Oðf 4Þ,
which is prohibitively expensive for most computing plat-

forms. For example, typical HIFU simulations would require

in excess of 100 GB RAM storage. The memory footprint of

the BEM can be reduced with storage of the matrices in

compressed format using data-sparse structures of the dis-

crete system.

The discretization of the boundary integral formulation

of the Helmholtz equation results in hierarchical matrices,

commonly denoted as H-matrices. The hierarchical structure

of the matrices originates from the Green’s function [Eq.

(4)], which characterizes the kernels of the double-layer and

hypersingular boundary operators [Eq. (6)]. The regularity of

the Green’s function increases with the distance between the

source and observer. Elements of the matrix that correspond

to far interactions are therefore more regular than near inter-

actions. This increased regularity of the kernel allows for the

accurate approximation with smooth functions. Using these

properties for groups of elements result in low-rank approxi-

mation of blocks of the matrix, which is the fundament of

theH-matrix compression technique.44,45

An established version of theH-matrix compression tech-

nique will be used, implemented in the library AHMED,45

which can be used within version 2 of the open-source BEMþþ
package.35

IV. NUMERICAL EXPERIMENTS

The aim of the presented research was to develop an ef-

ficient BEM for the scattering analysis of transcostal HIFU

modalities in medical treatment of cancer. To this end, the

efficiency of the standard Burton–Miller formulation has

been improved with OSRC preconditioning and H-matrix

compression. In this section, the performance of the algo-

rithm will be assessed with computational experiments.

First, the feasibility of the BEM for HIFU modalities will be

demonstrated with a simulation of acoustic scattering at

1 MHz on a human ribcage. As benchmark, a comparison

with proprietary software for scattering of a ribcage will be

performed in Sec. IV B. The improved convergence of the

OSRC preconditioner will be demonstrated on a simple

sphere model in Sec. IV C. Finally, the effectiveness of the

H-matrix compression will be shown in Sec. IV D.

The presented fast BEM formulation has been imple-

mented with the open-source BEMþþ library,35 version

2.0.1. The H-matrix compression of the discrete boundary

operators is readily available in BEMþþ and is, in this ver-

sion, based on the AHMED library.45 The OSRC precondi-

tioner has been implemented within the Python interface of

the core Cþþ library. The GMRES algorithm of the SciPy

library has been used as the linear solver for the discrete sys-

tem, where the termination criterion is a relative error of

10�5 in the preconditioned residual with the Euclidean

norm. All experiments are performed on a desktop machine

with 12 processors and 80 GB RAM.

A. Feasibility of the BEM for HIFU scattering at a
ribcage

To demonstrate the feasibility of our fast BEM for trans-

costal HIFU simulations, let us consider a model of four ribs

and a transducer array of 1 MHz. The parameters for the

lossless exterior medium are a density of 1000 kg/m3 and a

speed of sound of 1500 m/s, which are characteristic for

water. The transducer array consists of 256 piston elements

in a configuration that has been optimized for transcostal

HIFU simulation, as explained in Sec. II D. The transmitted

acoustic field [Eq. (9)] with a wavelength is 1.5 mm focuses

inside the ribcage. The scatterer geometry was obtained

from medical images of a human ribcage29 with the length
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of the ribs approximately 12 cm. The boundaries of the

sound-hard ribs are partitioned into a surface mesh consist-

ing of 156 575 triangles where the maximum diameter of the

triangular elements is 0.5 mm. This results in 78 297 degrees

of freedom for continuous piecewise linear test and basis

functions. The parameters for the OSRC preconditioner [Eq.

(14)] are given by NPad�e ¼ 2; h ¼ p=3, and R¼ 0.1768.

The computation of the discrete matrices with the stand-

ard H-matrix compression technique took 116 min and the

computation of the Cauchy data of the HIFU transducer

9 min. The GMRES solver for the OSRC-preconditioned

BEM converged in 94 iterations and 2 min, which is a major

improvement over the 4741 iterations and 69 min for the

standard Burton–Miller formulation. Figure 2 depicts the

pressure field around the ribcage with the HIFU transducer

focusing just behind the ribs. The reflections at the ribcage

result in a slight distortion of the focused acoustic area.

B. Benchmark comparison

To assess the validity of the fast BEM developed in this

paper, a benchmark comparison has been performed with the

proprietary program SCATTER provided by PACSYS Limited,

which has been used in earlier studies on HIFU scattering as

well.27–29 As test case, let us consider a geometry of three

ribs, truncated from the human ribcage model of Fig. 2. The

two media are modeled as described before, i.e., sound-hard

ribs and water in the exterior. As incident pressure field, let

us consider a plane wave pincðrÞ ¼ eikr�ẑ with a frequency of

1 MHz.

The scattering analysis with the BEM presented in his

paper has been performed with the BEMþþ implementation

of the preconditioned Burton–Miller formulation [Eq. (15)]

and the standard computational parameters as described

before. The Galerkin discretization uses continuous piece-

wise linear test and basis functions on a triangular mesh with

a maximum meshwidth of 0.375 mm, which results in 57 430

degrees of freedom.

The acoustic simulations performed with SCATTER use a

double-layer Helmholtz model [Eq. (5a)] and a complex wave-

number with a small attenuation parameter of 25 � 10�15f 2.

The numerical discretization follows a collocation method

with quadratic basis functions on a six-noded triangular surface

mesh. The same triangular patches as for BEMþþ has been

used, resulting in a larger system of 229 692 degrees of free-

dom for SCATTER. A prescribed number of 40 iterations has

been performed for the GMRES linear solver without compres-

sion techniques and distributed on a computing cluster of 100

cores.

The computational results depicted in Fig. 3 show a

good qualitative agreement of the two algorithms. The

BEMþþ solver with OSRC preconditioner and H-matrix

compression converges within 47 iterations. The computa-

tion time for the matrix-fill is 102 min and for the linear

solver only 33 s. The prescribed number of 40 GMRES itera-

tions with SCATTER each took approximately 10 min, so in

total more than 6 hr.

FIG. 2. (Color online) The pressure of the 1 MHz HIFU field focused inside

a ribcage, computed with the fast BEM algorithm that uses OSRC precondi-

tioning and H-matrix compression. The transducer array is located below

the ribcage.

FIG. 3. (Color online) The pressure of a plane wave field propagating in

upward direction and scattered at a ribcage visualized on a vertical slice. (a)

Preconditioned Galerkin BEM with BEMþþ. (b) Collocation BEM with

SCATTER.
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C. Convergence analysis of the preconditioner

The convergence behavior of the OSRC-preconditioned

BEM with respect to the frequency has been investigated

with a simple model of a unit-sized sphere and an incident

plane wave pincðrÞ ¼ eikr�ẑ . A convergence analysis has been

performed on a set of meshes with maximum element sizes

of f0:4; 0:2; 0:1; 0:05; 0:025; 0:0125g and corresponding

wavelengths f8; 4; 2; 1; 0:5; 0:25g. This results in a constant

oversampling factor of 20, i.e., the wavelength covers at

least 20 patches. Standard values for the other computational

parameters are used, as described before.

Figure 4 depicts the number of iterations and solution

time of the iterative linear solver in the cases of the

Burton–Miller formulation and the OSRC-preconditioned

formulation with NPad�e ¼ 2 and 8. The number of iterations

for the preconditioned formulation is almost independent of

the frequency, whereas the number of iterations for the

standard Burton–Miller formulation rapidly grows with the

frequency. This confirms the improved performance of the

preconditioner for high-frequency problems. Indeed, each

iteration for the preconditioned system is more expensive

than the standard Burton–Miller formulation. Still, the

wall-clock time of the GMRES solver is smaller for the

OSRC-preconditioned formulation. The improvement in com-

putation time is especially significant for high frequencies.

These convergence characteristics are corroborated by the

spectral condition number of the discretization matrix, i.e.,

the ratio of the largest and smallest magnitude of the eigenval-

ues. A larger condition number typically results in slower

convergence of the iterative linear solver. As listed in Table I,

the OSRC preconditioner improves the conditioning of the

Burton–Miller formulation. Furthermore, the spectra of the

different formulations depicted in Fig. 5 demonstrate that the

spectrum of the OSRC-preconditioned equation is more clus-

tered and thus favorable over the Burton–Miller formulation.

One of the most influential parameters for the OSRC

preconditioner is the size of the Pad�e approximation [Eq.

(16)]. A larger size of the Pad�e series improves the accuracy

and reduces the number of iterations but increases the com-

putation time. The experiments demonstrate that a relatively

small size of the Pad�e series is already sufficient for the

expected performance of the preconditioner.

D. Compression rate of discrete systems

The H-matrix compression technique is based on sparse

approximations of low-rank blocks within a matrix. The

structure of compressed matrices can be visualized as in Fig.

6. The numbers denote the rank of the approximation of the

corresponding block. The compression rate is defined by the

ratio of the storage in compressed format compared to the

dense matrix. This is related to both the number of blocks

and the rank of the approximations.

The H-matrix structure of the discrete double-layer

boundary operator for the HIFU simulation described in Sec.

IV A is depicted in Fig. 6. The storage of the 78 297 degrees

of freedom as a dense matrix would need 93.5 GB RAM. In

compressed format it requires 7.4 GB only, which is a com-

pression rate of 7.9%. The algorithm does require some stor-

age overhead during the assembly of the compressed matrix

though. For the discrete hypersingular boundary operator, a

compression rate of 12.2% to 11.4 GB has been achieved

with a structure similar to the double-layer operator. In gen-

eral, the double-layer operator can be compressed more

effectively than the hypersingular operator because the oper-

ator is more regular.

1. Influence of frequency and mesh size

The frequency of the wave model has a profound influ-

ence on the performance of the compression rate of the

H-matrix technique for BEM. A higher frequency typically

results in approximations of higher rank and therefore more

storage. Simulating a frequency of 0.1 MHz instead of

1 MHz on the same mesh results in a compression rate of

FIG. 4. (Color online) The performance of the Burton–Miller and OSRC-

preconditioned formulation on a sphere. The value of Np denotes the size of

the Pad�e series expansion [Eq. (16)]. (a) The number of GMRES iterations.

(b) The simulation time.

TABLE I. The spectral condition numbers of the discretization matrices

have been computed for different model formulations of acoustic scattering

at a sphere. A small condition number typically results in quick convergence

of the iterative linear solver.

Wavenumber 0.79 1.57 3.14 6.28

Burton–Miller 10.81 31.66 90.23 62.10

NPad�e ¼ 2 1.63 2.25 2.05 2.04

NPad�e ¼ 8 1.15 1.54 1.38 1.38
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FIG. 5. (Color online) The spectrum of

the discrete model equations for the

test case on a sphere with a wavenum-

ber of 6.28. The dots depict the

eigenvalues of the matrix in the

complex plane. The inner and outer

circle depict the minimum and maxi-

mum value of the spectrum and its

bandwidth thus represents the condi-

tion number. (a) Burton-Miller. (b)

NPad�e¼ 2. (c) NPad�e¼ 8.

FIG. 6. (Color online) The structure of

the data-sparse representation of the

discretized double-layer boundary op-

erator with H-matrix compression

techniques, as used for the 1 MHz

HIFU scattering analysis of a ribcage.
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2.4% to 2.2 GB storage, instead of 7.9%. The structure,

depicted in Fig. 7(a), is almost the same for the different fre-

quencies. The rank of the compressed blocks, however, are

significantly lower. For instance, the maximum rank drops

from 664 to 181 when decreasing the frequency from 1 to

0.1 MHz, respectively.

For BEM, the storage of the dense discrete system

scales quadratically with the number of mesh elements. In

compressed format, the storage of the matrices may scale

less than quadratically when the compression rate increases.

To investigate this effect for HIFU simulations, let us

consider the ribcage model with a coarse mesh where the di-

ameter of the elements is two times larger than for the origi-

nal model. The number of degrees of freedom is 20 600 and

the frequency is 0.5 MHz to keep the same oversampling

factor. The compression rate of the coarse mesh is only

14.2% compared to the 7.9% for the fine mesh.

2. Influence of geometry

The regularity of the Green’s function for the 3D

Helmholtz equation strongly depends on the distance

FIG. 7. (Color online) The influence of a lower frequency and a coarser mesh on the structure of the H-matrix compression technique, as compared to Fig. 6.

(a) Lower frequency. (b) Coarser mesh.

FIG. 8. (Color online) The influence of the geometry on the structure of theH-matrix compression technique as compared to Fig. 6. (a) Three rib model. (b) Sphere.
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between spatial elements. The structure of the scatterer can

therefore have a large impact on the compression rate of H-

matrix techniques for BEM. Specifically, the disjoint ribs in

the HIFU model have elements that are far away from each

other, relative to the wavelength. The blocks in the discreti-

zation matrix corresponding to the influence of the separate

ribs can therefore be effectively compressed with a low-rank

approximation. This is demonstrated by the H-matrix struc-

ture of the four rib model in Fig. 6, where four large blocks

can be distinguished. As comparison, let us consider a model

of three ribs, used in Sec. IV B as well, and a sphere that con-

sist of 57 430 and 65 187 degrees of freedom, respectively.

All simulations are for a frequency of 1 MHz where the

sphere is scaled to a diameter of 10 cm for comparable

dimensions as the ribcage models. The compression rate for

the three-ribs model is 6.3% and for the sphere 22.5%. As

depicted in Fig. 8(a), the three ribs result in blocks of one-

third the size of the matrix, representing the disjoint regions

in the model. The H-matrix compression for the ribcages is

significantly more effective than for the sphere. In the case

of the sphere, the blocks are relatively small and the rank of

the approximations high as depicted in Fig. 8(b). The com-

pression of the discrete system for ribcages with H-matrix

techniques is thus more efficient than one might expect from

standard test cases such as a sphere.

V. CONCLUSION

The use of HIFU techniques in non-invasive medical

therapies can have a large clinical impact on the treatment of

a wide range of cancers. The patient-specific planning of

transcostal HIFU treatment is likely to rely on numerical

simulations to optimize the configuration of the multi-

element ultrasound transducer array. A model of perfectly

rigid ribs from the human ribcage immersed in an infinite ho-

mogenous region of water has been used. Whilst this meth-

odology does not preclude defining locally reacting ribs, the

aim of this study was to investigate a rudimentary configura-

tion, which will then be built upon as part of future work.

Such models can be efficiently solved using the BEM, which

has, however, so far seen limited use due to the high demand

for computational resources at high frequencies. An innova-

tive fast BEM has been developed in this paper specifically

for application to HIFU simulations. The Galerkin-

discretized Burton–Miller formulation is an accurate method

for scattering that is devoid of spurious resonances. The

innovative use of OSRC-preconditioning techniques signifi-

cantly improves the convergence for high-frequency scatter-

ing at large-scale structures. Furthermore, the H-matrix

compression technique effectively reduces the large memory

footprint. This novel combination of acceleration algorithms

for accurate BEM has been implemented within the open-

source library BEMþþ. Scattering analysis of a human rib-

cage at 1 MHz confirms the improvement of convergence

and the effectiveness of matrix compression with the dedi-

cated fast BEM algorithm. Realistic simulations of transcos-

tal HIFU techniques have been achieved with only 2 hr

computation time on a desktop machine. This demonstrates

the applicability of fast BEM simulations to medical treat-

ment with transcostal HIFU modalities.
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