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Abstract This chapter presents the application of the boundary element method
to high-frequency Helmholtz problems in unbounded domains. Based on a standard
combined integral equation approach for sound-hard scattering problems we discuss
the discretization, preconditioning and fast evaluation of the involved operators. As
engineering problem, the propagation of high-intensity focused ultrasound fields
into the human rib cage will be considered. Throughout this chapter we present
code snippets using the open-source Python boundary element software BEM++ to
demonstrate the implementation.

1 Introduction

The boundary element method (BEM) is an efficient and competitive tool to solve
large-scale high-frequency Helmholtz problems in bounded or unbounded domains.
Recent developments in fast matrix compression and preconditioning for boundary
integral operators have pushed the computational limit of high-frequency boundary
element computations such that problems in three dimensions with over a hundred
wavelengths across the domain can be solved on a single workstation [48]. Fur-
thermore, the availability of high-level software libraries allows for a convenient
implementation of different boundary integral formulations [42]. This combination
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makes it possible to solve large-scale problems of engineering interest effectively
with the BEM.

This chapter will deal with exterior scattering of sound waves. In this case, a
bounded domain Ω−⊂R3 is immersed in a homogeneous unbounded region Ω+ :=
R3\Ω− and excited by a harmonic wave with a fixed wavenumber k. Notice that the
object has to be bounded but not necessarily connected. The main objective is the
computation of the total wave field utot obtained from the scattering of an incident
wave field uinc at the object. For rigid objects, we have a sound-hard condition at
the boundary Γ , which is assumed to be Lipschitz continuous with unit normal
direction n̂ outward pointing. This scattering problem is modeled by the Helmholtz
system

−∆utot− k2utot = 0 in Ω
+, (1a)

∂utot

∂ n̂
= 0 on Γ , (1b)

lim
|x|→∞

|x|
(

∂usca

∂ |x|
− ikusca

)
= 0 (1c)

where the last equation is the Sommerfeld radiation condition at infinity. Here,
usca denotes the scattered field, such that utot = uinc + usca. The scatterer object is
assumed to be impenetrable, hence utot = 0 in Ω−.

Helmholtz problems are often solved with computational methods such as finite-
difference, finite-element and spectral techniques. As opposed to these volume-
based algorithms, we will use the surface-based BEM [40, 44, 41]. The basic idea
behind the BEM is to reformulate the Helmholtz system into a boundary integral
formulation and solve the scattering problem on the surface itself. In this chap-
ter we will review the design of boundary integral equations with an emphasis on
large-scale scattering problems at high frequencies. For this case, it is necessary
to use modern matrix compression and preconditioning techniques. We will ap-
ply these state-of-the-art techniques to a challenging problem arising from medi-
cal high-intensity focused ultrasound simulations [25]. In [48] we have published
an earlier version of some of the techniques presented in this chapter. There, more
details about the engineering application can be found. Here, we give a more de-
tailed analysis of the boundary integral formulations, include other formulations as
well and explain the compression technique. Furthermore, this chapter uses a newer
version of BEM++ which allows us to perform experiments on a larger scale.

The explicit use of the acoustic Green’s function gives the BEM some major ad-
vantages compared to standard computational methods. First of all, the Sommerfeld
radiation condition (1c) is exactly satisfied by boundary integral representations.
There is thus no need for absorbing boundary conditions to artificially truncate the
exterior region, as is required for volume-based discretization techniques [28]. This
makes the BEM a natural choice for solving scattering problems in unbounded do-
mains. Another positive effect from the Green’s function is that well-chosen dis-
cretizations are essentially free of pollution and dispersion, even for low order dis-
cretizations using piecewise constant basis functions [29]. Furthermore, since the
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model equations live on the boundary only, surface meshes are being used. These
are often easier to generate for complex geometries compared to volume meshes.

On the other hand, the BEM is not free of problems. For instance, it is crucial
to carefully choose the correct type of boundary integral equation formulation. In
particular for high-frequency problems it is necessary to choose a formulation that
does not suffer from breakdown at certain resonant frequencies [1, 2]. This will be
the topic of Section 2.

In the case of large-scale simulations, the discrete system of equations is typically
being solved with iterative linear solvers, which are asymptotically more efficient
than direct solvers [3]. Furthermore, these methods mainly rely on matrix-vector
multiplications, which are relatively easy to parallelize and for which acceleration
algorithms are available. However, the required number of iterations can easily be-
come prohibitively large for high-frequency problems, especially for the classical
boundary integral formulations. In Section 3 we therefore review various operator
preconditioning techniques for high-frequency applications and numerically assess
their performance in Section 5.2.

A naive discretization of the boundary integral operators would lead to dense ma-
trix problems and a complexity of O

(
N2
)

for the assembly and the matrix-vector
product, where N is the number of elements. For a fixed number of surface elements
per wavelength, i.e., N ∼ k2, the complexity will therefore scale as O

(
k4
)
. This

is only feasible for small-scale problems. For large-scale applications it is vital to
use acceleration schemes that reduce the computation time and memory footprint
to realistic measures for present-day computer architectures. The most prominent
of such methods are Fast Multiple Methods (FMM) [17, 16, 23] and hierarchical
matrix techniques (H -matrices and their H 2 and HSS variants) [32, 8, 6, 49, 35].
They achieve a complexity of O (N) or O (N log(N)) for the matrix-vector multi-
plication, depending on the frequency regime and the specific implementation. In
Section 4 we will discuss the behavior of classical H -matrix techniques for ex-
terior scattering problems in more detail. While their complexity with respect to a
growing wavenumber k is asymptotically not as good as high-frequency FMM, they
are kernel-independent, relatively easy to implement and offer good performance
for a wide range of application relevant frequencies.

The numerical implementation of a high-frequency BEM is challenging, mainly
because of the necessity of specialized acceleration techniques and quadrature rules
for singular integral operators. In Section 5 we will introduce the open-source soft-
ware library BEM++ [42] which has been used to perform all computational exper-
iments in this chapter. This library was originally developed at University College
London and provides a comprehensive Python toolbox to setup and solve Laplace,
Helmholtz and Maxwell problems via the BEM. Matrix compression is integrated
and various preconditioners are available for the efficient solution of large-scale
problems. Fast computations are achieved because the core discretization and com-
pression routines are written in C++. All these routines are accessible via a high-
level Python interface, which provides a user-friendly programming environment.
We will present code examples to demonstrate how, with only a limited amount of
high-level instructions, an entire BEM simulation can be performed with BEM++.
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Tutorials in the form of IPython notebooks can be downloaded from the website of
the BEM++ project (www.bempp.org).

Finally, in Section 6 we present the application of the fast BEM to a realistic prob-
lem arising from medical treatment planning in high-frequency focused ultrasound.
The described problem will lead to a system with around half a million unknowns
and simulates over one hundred wavelengths across the computational domain. This
has been solved with BEM++ on a single workstation, thus confirming the capabil-
ities of the efficient BEM presented in this chapter.

2 Boundary integral formulations of high-frequency scattering

In this section we review the standard combined field equations for boundary in-
tegral formulations of high-frequency scattering. Details and proofs of the state-
ments given here can be found in standard textbooks such as [40, 44, 41]. A recent
overview article of novel mathematical developments for high-frequency scatter-
ing formulations based on hybrid numerical-asymptotic methods is also given in
[15]. While these hybrid numerical-asymptotic methods have the potential to solve
scattering problems on certain geometries with an almost wavenumber independent
convergence, they are not yet suitable for larger industrial applications with realistic
meshes.

2.1 Surface representation of the scattering model

The reformulation of the exterior model into a surface model necessitates operators
that map between the volume Ω− ∪Ω+ and the boundary Γ . The map from the
volume to the boundary is provided by the trace operators, which are denoted by γ .
More specifically, the Dirichlet trace operators γ

−
0 and γ

+
0 are defined as the limit

values of a field towards the interface from the interior and exterior domain, respec-
tively, and the Neumann trace operators γ

−
1 and γ

+
1 are the corresponding normal

derivatives. On the other hand, the potential operators map from the surface to the
volume. They are defined as

(V ψ)(x) :=
∫

Γ

G(x,y)ψ(y)dΓ (y) for x ∈Ω
−∪Ω

+, (2)

(K φ)(x) :=
∫

Γ

∂n(y)G(x,y)φ(y)dΓ (y) for x ∈Ω
−∪Ω

+ (3)

and are called the single-layer and double-layer potential operators, respectively.
Here, ψ and φ denote surface potentials that live on the boundary only. The function
G(x,y) is the acoustic Green’s function defined by
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G(x,y) :=
eik|x−y|

4π|x−y|
for x 6= y (4)

and ∂n(y)G(x,y) is its normal derivative along n̂ with respect to y.
Using the single-layer and double-layer potential operator one can derive a rep-

resentation formula for any radiating solution u of the Helmholtz equation as

u(x) = (V ψ)(x)− (K φ)(x) for x ∈Ω
−∪Ω

+ (5)

with

ψ = γ
−
1 u− γ

+
1 u, (6a)

φ = γ
−
0 u− γ

+
0 u (6b)

being the jumps of the solution across the interface.
Taking the trace or normal derivative of both sides of the equality in Eq. (5) will

result in an equation that is fully defined on the boundary. This necessitates the
analysis of the traces and normal derivatives of potential operators. One can show
that the following boundary operators are well defined almost everywhere if Γ is
piecewise smooth:

(V ψ)(x) :=
∫

Γ

G(x,y)ψ(y)dΓ (y) for x ∈ Γ , (7)

(Kφ)(x) :=
∫

Γ

∂n(y)G(x,y)φ(y)dΓ (y) for x ∈ Γ , (8)

(T ψ)(x) :=
∫

Γ

∂n(x)G(x,y)ψ(y)dΓ (y) for x ∈ Γ , (9)

(Dφ)(x) :=−∂n(x)

∫
Γ

∂n(y)G(x,y)φ(y)dΓ (y) for x ∈ Γ . (10)

Moreover, for piecewise smooth Γ the following jump relations are defined almost
everywhere:

V ψ = γ
−
0 (V ψ) = γ

+
0 (V ψ), (11)

Kφ = γ
−
0 (K φ)+

1
2

φ = γ
+
0 (K φ)− 1

2
φ , (12)

T ψ = γ
−
1 (V ψ)− 1

2
ψ = γ

+
1 (V ψ)+

1
2

ψ, (13)

Dφ =−γ
−
1 (K φ) =−γ

+
1 (K φ). (14)

For the precise definition in the general Lipschitz case see e.g. [44, Chapter 6].
The operators V , K, T , and D are called the single-layer, double-layer, adjoint

double-layer and hypersingular boundary integral operator, respectively, and satisfy
the mapping properties
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V : H − 1
2 (Γ )→H

1
2 (Γ ), K : H

1
2 (Γ )→H

1
2 (Γ ),

T : H − 1
2 (Γ )→H − 1

2 (Γ ), D : H
1
2 (Γ )→H − 1

2 (Γ )

for fractional Sobolev spaces H
1
2 (Γ ) and H − 1

2 (Γ ). In addition, the identity
boundary operator is denoted by I. Boundary integral equations can now readily be
derived by taking traces of representation formulas. The simplest forms are based
on the normal derivative of the single-layer or double-layer potential operator only.
Drawback of these operators is their nontrivial nullspace at resonant frequencies. An
effective approach to mitigate the breakdown at resonances is to consider combined
field integral equations that are uniquely solvable for all real wavenumbers.

2.2 The Burton-Miller combined boundary integral equation

A classical combined field integral equation for the scattering problem (1) is the
Burton-Miler formulation [13]. This formulation is free of spurious resonances and
the unique solution has a direct interpretation as the trace of the exterior total field
on the boundary Γ . We start with the direct representation (5) of the scattered field,
i.e., usca = V ψ−K φ where the surface potentials ψ and φ are given by the jumps
of the scattered field across the boundary and can be simplified as

ψ = γ
−
1 usca− γ

+
1 usca = γ

−
1 (utot−uinc)+ γ

+
1 uinc = 0,

φ = γ
−
0 usca− γ

+
0 usca = γ

−
0 (utot−uinc)− γ

+
0 (utot−uinc) =−γ

+
0 utot

because the total field is zero in the interior and the incident wave field smooth
across the boundary. This reduces the representation formula to

usca = K (ϕ), ϕ = γ
+
0 utot. (15)

Taking the exterior Neumann trace γ
+
1 of this representation formula yields

−γ
+
1 uinc =−Dϕ (16)

where the boundary condition and jump relation (14) have been used. The interior
Dirichlet trace γ

−
0 of the representation formula results in

−γ
+
0 uinc = Kϕ− 1

2
ϕ (17)

where the zero interior field, jump relation (12) and smoothness of the incident wave
field have been used.

Both boundary integral equations (16) and (17) solve the scattering problem for
the same surface potential. Any linear combination will therefore solve the scatter-
ing problem as well. That is, for a coupling parameter η ∈ C, the Burton-Miller
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formulation
Aη ϕ = uinc +η∂nuinc (18)

with
Aη :=

( 1
2 I−K

)
ϕ +ηDϕ

solves the scattering problem with the representation formula (15). The Burton-
Miller formulation is uniquely solvable for ℑ(η) 6= 0 and η = i/k is a good choice
of coupling parameter [37].

2.3 Regularizing the Burton-Miller formulation

We notice that the Burton-Miller formulation (18) is not without problems. The op-
erator

( 1
2 I−K

)
is minus the interior trace of the double layer potential operator K

and maps from H
1
2 (Γ ) into H

1
2 (Γ ), whereas the hypersingular operator D maps

from H
1
2 (Γ ) into H − 1

2 (Γ ). A solution to this mismatch in mapping characteris-
tics is to consider regularized combined field operators [12]. For a regularization
operator

R : H − 1
2 (Γ )→H

1
2 (Γ ),

the regularized Burton-Miller formulation reads( 1
2 I−K

)
ϕ +RDϕ = uinc +R∂nuinc, (19)

where now the operator AR :=
( 1

2 I−K
)
+RD is well defined on H

1
2 (Γ ). The

design of sophisticated regularization techniques forms the basis of the efficient
preconditioning strategies discussed in Section 3.

2.4 Indirect formulations

An alternative approach to obtaining a combined field integral equation for the scat-
tering problem (1) is to use an indirect representation of the scattered field as the
linear combination

usca =−iµV φ +K (Rφ) (20)

where regularization with R has been applied. Taking the exterior Neumann trace γ
+
1

on both sides and using ∂nuinc =−∂nusca on boundary Γ results in

−∂nuinc = iµ
( 1

2 I−T
)

φ −D(Rφ). (21)

Traditionally, equation (21) without the regularization is called the Brakhage-
Werner formulation [9]. In [11] it is suggested to use µ = 1 for high-frequency
scattering problems.
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2.5 Boundary element methods

For the discretization of boundary integral operators typically either collocation or
Galerkin methods are used. While collocation methods are easier to implement, the
Galerkin method has advantages with respect to coupling with finite element meth-
ods, symmetry of the resulting operators, and assembly on non-smooth domains.
Here, we focus on Galerkin methods for the Burton-Miller formulation (18).

Let Γh be a triangulation of Γ with n nodes x̂ j, j = 1, . . . ,n. Let φ j be a continuous

piecewise linear function defined on Γh such that φ j(x̂i) =

{
1, i = j
0, i 6= j . Let us denote

by Vh :=
{

∑
n
j=1 v jφ j, v j ∈ C

}
the space spanned by the nodal basis functions φ j.

Define the standard real dual pairing

〈ϕ,ϑ〉 :=
∫

Γ

ϕ(y) ·ϑ(y)dΓ (y). (22)

The Galerkin discretization of the Burton-Miller formulation is now given as the
discrete matrix problem

Aη v = b

with
[
Aη

]
i j = 〈Aη φ j,φi〉 and bi = 〈uinc,φi〉+ 〈η∂nuinc,φi〉.

The matrix Aη is given as Aη = 1
2 I−K+ηD, where the individual matrix entries

are computed as[
I
]

i j =
∫

Γ

φi(x)φ j(x) dΓ (x),[
K
]

i j =
∫

Γ

φi(x)
∫

Γ

∂n(y)G(x,y)φ j(y)dΓ (y)dΓ (x),[
D
]

i j =−
∫

Γ

φi(x)∂n(x)

∫
Γ

∂n(y)G(x,y)φ(y)dΓ (y)dΓ (x)

=
∫

Γ

∫
Γ

G(x,y)(curlΓ φi(x) · curlΓ φ j(y)) dΓ (y)dΓ (x)

− k2
∫

Γ

∫
Γ

G(x,y)φi(x)φ j(y)(n̂(x) · n̂(y)) dΓ (y)dΓ (x).

For the hypersingular operator D the last formula follows from integration by parts
and leads to a weakly singular integral. We also note that DT

= D and KT
= T ,

where T is the discretization of the adjoint double-layer boundary operator.
Evaluating these integrals requires singularity-adapted quadrature rules. A gen-

eral fully numerical quadrature scheme based on regularizing coordinate transfor-
mations is described in [41]. However, this scheme can still lead to large errors in
situations such as sharp edges, two parallel triangles that are close to each other,
and almost degenerate triangles. Alternative quadrature schemes that can deal with
some of these issues are described for example in [38].
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If instead of a scalar η we use a regularizing operator R, then the operator AR

is well defined on H
1
2 (Γ ) and we can formulate a variational problem to find φ ∈

H
1
2 (Γ ) such that

〈ARφ ,ϑ〉= 〈uinc,ϑ〉+ 〈R∂nuinc,ϑ〉, ∀ϑ ∈H − 1
2 (Γ ),

where we now interpret the dual pairing 〈·, ·〉 as a dual pairing on H
1
2 (Γ )×

H − 1
2 (Γ ). The corresponding discrete left-hand-side matrix is then given as

AR :=
1
2

I−K +R I−1 D,

where [R]i j = 〈Rφ j,φi〉. To analyze the Galerkin variational formulation, tech-
niques as discussed in [12] can now be used.

The discretization above uses the same space Vh of continuous piecewise linear
nodal basis functions to discretize H

1
2 (Γ ) and H − 1

2 (Γ ). However, we use the
space H − 1

2 (Γ ) to represent Neumann data. Hence, this approximation is only suit-
able if the boundary Γ is sufficiently smooth to support continuous Neumann data.
For more general Lipschitz domains we can expect discontinuities and a more nat-
ural basis of H − 1

2 (Γ ) is a space of discontinuous piecewise constant functions. A
stable dual pairing between continuous nodal basis functions and a space of piece-
wise constant discontinuous functions can be achieved by defining the discontinuous
functions on the dual grid [33].

3 Operator preconditioners for high-frequency problems

The classical Burton-Miller formulation suffers from poor convergence for high-
frequency problems on general domains. The main reason is that the hypersingular
operator D acts like an unbounded differential operator from H

1
2 (Γ ) to H − 1

2 (Γ ).
As explained in Section 2.3, including a regularization operator fixes the mismatch
in function spaces. Being an operator preconditioner, this regularization should be
carefully chosen such that it improves the conditioning of the discrete system [43,
34, 36]. In practice, the regularization is ideally designed such that the resulting
boundary integral operator is a compact perturbation of the identity operator.

In this section we will focus on two types of regularization, based on a high-
frequency approximation of the Neumann-to-Dirichlet (NtD) map and the single-
layer boundary operator. These operator preconditioners do not depend on the dis-
cretization method and can readily be combined with acceleration schemes such as
H -matrix compression.
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3.1 OSRC preconditioning

The On-Surface Radiation Condition (OSRC) preconditioner is based on the idea of
finding a local surface approximation of the NtD map [4, 5, 20]. For ϑ ∈H − 1

2 (Γ )

we define the exterior Neumann-to-Dirichlet map N+
ex : H − 1

2 (Γ ) → H
1
2 (Γ ) as

N+
ex(ϑ) := γ

+
0 uϑ , where uϑ is the solution of the exterior Helmholtz problem

−∆uϑ − k2uϑ = 0 in Ω
+,

∂uϑ

∂ n̂
= ϑ on Γ ,

lim
|x|→∞

|x|
(

∂uϑ

∂ |x|
− ikuϑ

)
= 0.

Using the NtD map it follows from the exterior Calderón projector [44, Section 7.5]
that (

1
2

I−T −DN+
ex

)
ϑ = ϑ (23)

for ϑ ∈H − 1
2 (Γ ). Assume that an approximation Ñ+

ex of the NtD map is given.
Then, after discretization, we obtain(

1
2

I−T −DI−1Ñ+
ex

)
v≈ Iv.

Notice that since T T
= K and DT

= D the transpose of the left-hand-side operator

equals the regularized Burton-Miller operator with R
T
= −Ñ+

ex. This shows that a
good approximation to the NtD map results in an excellent preconditioner.

Unfortunately, the NtD map is a non-local pseudo-differential operator whose
computation itself involves the solution of an exterior Helmholtz problem which
makes its direct use as preconditioner impractical. However, there are efficient ap-
proximations that can be used. We have already encountered the most basic approx-
imation, namely N+

ex ≈ 1
ik giving the classical Burton-Miller operator with η = i/k.

Alternatively, a more accurate approximation of the NtD map can be derived as

Nosrc =
1
ik

(
1+

∆Γ

k2
ε

)−1/2

(24)

where ∆Γ denotes the surface Laplace-Beltrami operator [4, 5]. The occurrence of
singularities is prevented with the use of a damped wavenumber kε = k(1+ iε).
Based on a spectral analysis on a sphere, a good choice of damping is ε =
0.4(kR)−2/3 with R the radius of the object [20]. Localization of this operator is
achieved with a Padé approximation of size n and a nonzero branch cut, typically 4
and π/3, respectively. The application of the OSRC operator is now reduced to solv-
ing a set of (n+1) surface Helmholtz equations with complex-valued wavenumber.
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The solution procedure of these local operators can efficiently be performed with
sparse LU-factorization.

The OSRC-preconditioned Burton-Miller formulation( 1
2 I−K

)
ϕ−NosrcDϕ = uinc−Nosrc

∂nuinc (25)

is uniquely solvable in H
1
2 (Γ ) on a smooth surface, for any wavenumber and

nonzero damping factor [20]. Moreover, the boundary integral operator reduces to

( 1
2 I−K

)
ϕ−NosrcDϕ =

(
1
2
+

kε

2k

)
I +C (26)

for a compact operator C if Γ is sufficiently smooth. This is a second kind Fredholm
integral equation and has a clustering of eigenvalues, resulting in fast convergence
of linear solvers.

3.2 Regularization by single-layer boundary operators

Another strategy to achieve regularization of the hypersingular operator is to con-
sider the single-layer potential. With Calderón identities [44, Corollary 6.19], one
can show that

DV = 1
4 I−T 2,

V D = 1
4 I−K2.

Hence, if Γ is sufficiently smooth, then the product of the single-layer and the hy-
persingular boundary operator is a compact perturbation of a scaled identity. How-
ever, the single-layer operator alone is not a good choice of a regularizer due to the
existence of resonances. A solution was proposed in [11], where the single-layer
boundary operator Vκ with wavenumber κ = ik/2 was investigated as regularizer
for the Brakhage-Werner formulation (21). Specifically,

i
( 1

2 I−T
)

ϕ−DVκ ϕ =−∂nuinc, (27)

for a coupling parameter µ = 1. Similarly, this regularization can also be applied
to the Burton-Miller formulation (19). For sufficiently smooth Γ this formulation
is again a perturbation of a scaled identity because Vκ D = (V +C)D, where C is a
compact operator [12, Lemma 2.1] and V is the single-layer operator for the original
wavenumber k. The imaginary-wavenumber single-layer operator can be evaluated
relatively cheap as it allows a very efficient low-rank representation.
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{1, 2, . . . , N}

{
⇠
N

2

⇡
+ 1, . . . , N}

. . . . . . . . . . . .

{1, . . . ,
⇠
N

2

⇡
}

Fig. 1 Division of degrees of freedom into a cluster tree.

4 Fast H -matrix assembly

Hierarchical (H -)matrix compression based on adaptive cross approximation (ACA)
is a widely used technique to assemble boundary integral operators in a compressed
format. It has a complexity of O(N logN) for compression and evaluation of matrix-
vector products, where N denotes the number of global degrees of freedom. This ap-
proach is relatively easy to implement, easily parallelizable, and builds a direct alge-
braic representation of the compressed operator that allows very fast matrix-vector
products, compared to FMM. Main disadvantages are the longer setup time and
often significantly higher memory consumption than FMM. However, particularly
for low-frequency or non-oscillatory problems the performance is often excellent.
Moreover, even though standard H -matrix compression does not scale well asymp-
totically as k→ ∞, its practical performance even for higher-frequency problems is
often very good as we will see in this and the following sections.

4.1 The fundamentals of H -matrix compression

In this section we give a brief overview of the main ideas of H -matrix compression.
More details can be found in [7, 32]. The H -matrix compression is based on a
geometric subdivision of the set of degrees of freedom (dofs) I in the boundary
element mesh into a cluster tree T (I). On each level the dofs are subdivided into two
geometrically separated sets, as depicted in Fig. 1. The leafs of the cluster tree are
reached when the number of dofs in each subdivision is below a specified tolerance.
Given a set of dofs I for the test functions and a set of dofs J for the basis functions
in the BEM discretization a block cluster tree T (I×J) is now constructed as follows.

1. The root of the block cluster tree is the product index set b0 = τ×σ with τ = I
and σ = J.

2. Given a node b′ = τ ′×σ ′ of the block cluster tree, where τ ′ and σ ′ are nodes of
the corresponding cluster trees T (I) and T (J):
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• Stop the recursion if the current node satisfies an admissibility condition or if
one of the cluster tree nodes σ ′ and τ ′ is a leaf node.

• If the recursion is not stopped, define the sons of the block cluster tree node b′

as the set {τ ′1×σ ′1,τ
′
1×σ ′2,τ

′
2×σ ′1,τ

′
2×σ ′2} for the sons τ ′i and σ ′j, i, j = 1,2

of the cluster tree nodes τ ′ and σ ′.

The admissibility condition is satisfied if the geometric bounding boxes X and
Y associated with the cluster nodes τ ′ and σ ′ satisfy a separability condition. A
frequently used condition is given as

min{diam(X),diam(Y )} ≤ α dist(X ,Y ).

Here, diam denotes the diameter of a bounding box and dist the distance of two
bounding boxes. The parameter α controls how strongly separated X and Y must
be so that the admissibility condition is satisfied. By default, BEM++ uses a weaker
condition given as

dist(X, Y) > 0.

This works sufficiently well in practice and usually leads to a fewer number of
blocks on the block cluster tree.

Once the generation of the block cluster tree has been completed, a compressed
representation of the BEM matrix A can be assembled as follows. Let b′ = τ ′×σ ′ ∈
L (T (I× J)), the set of all leaf blocks of the block cluster tree T (I× J).

• If b′ is not admissible, then evaluate all entries of Aτ ′×σ ′ , the restriction of A onto
the index set τ ′×σ ′, directly and store the corresponding dense representation.

• If b′ is admissible, then store a low rank representation Aτ ′×σ ′ ≈Ub′×V H
b′ , where

Ub′ is of dimension |τ ′|× t and Vb′ is of dimension |σ ′|× t where t denotes the
local rank.

To obtain a low-rank representation, a frequently used algorithm is Adaptive Cross
Approximation (ACA). It is a heuristic algorithm that often works remarkably well
and allows an approximate error control to determine the local rank t adaptively
given a global error bound. However, most importantly, ACA only needs to compute
a small fraction of the elements of the original matrix so that even very large BEM
discretizations can be assembled on standard workstation systems.

Finally, often the above described compression procedure is intermixed with a
recompression scheme in which after the compression of individual son blocks of a
block cluster tree node b′ a compression of b′ itself is attempted using information
from the sons. If this needs less memory than the original son representations, then
the low-rank compression of b′ itself is used instead and the sons deleted.

4.2 The H -matrix compression at high frequencies

The above described compression scheme is very efficient for low or non-oscillatory
problems. However, for high-frequency problems the minimum rank required in
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each admissible block grows with the wavenumber. Let us consider the block clus-
ter leaf node b′ = τ ′×σ ′ and the corresponding bounding boxes X and Y . Given the
Green’s function G(x,y), the efficiency of the above described H -matrix compres-
sion depends on the number tε , such that∥∥∥∥∥G(x,y)−

tε

∑
j=1

g j(x)h j(y)

∥∥∥∥∥
X×Y

< ε

for given ε . The number tε is the minimum number of terms needed for a low-rank
representation of the Green’s function with accuracy ε . In [22] it is shown that

k2−δ . tε . k2+δ , ∀δ > 0. (28)

The overall computational cost of compression and evaluation is linear with respect
to the rank estimate t in the admissible blocks, that is, the complexity scales like
O (tN logN). However, the rank t is dependent on N in high-frequency scattering.
We typically choose a fixed number of dofs per wavelength, that is N ∼ k2. Together
with (28) it therefore follows that t ∼ N giving an overall asymptotic complexity of
O
(
N2 logN

)
for H -matrix compression. This would make H -matrices unfeasible

for large-scale problems in the limit k→ ∞.
Fortunately, in practice the behavior seems much better for realistic wavenum-

bers. In Table 1 we show performance results for the compression of the standard
single-layer boundary operator V with piecewise constant basis functions on the unit
sphere for varying wavenumbers. We discretize the sphere with around 10 elements
per wavelength, that is, h = 2π/(10k). For the ACA we choose an error tolerance of
10−5, which is sufficient for a wide range of applications. The timing results were
done on a 20 cores, two processor Intel Xeon E5-2670 workstation with 2.5 Ghz and
192 GB RAM. The compression rate measures how much memory the H -matrix
requires compared to a dense matrix of the same size. Recompression was not en-
abled. Also, BEM++ currently ignores the symmetry of the single-layer boundary
operator, which could give another factor two saving. For the highest wavenumber
k = 80 with 480 thousand elements the assembly time is roughly 7.8 minutes and
the memory consumption is 62 GB.

It is interesting to measure the growth rate of the memory in dependence on N.
We assume a memory growth of O(Nβ ) for some β > 0. The last column in Table 1
shows estimates for β by comparing the memory growth from one wavenumber to
the next. The effective exponent is around 1.3, which is significantly better than
the asymptotic worst-case consideration given above and makes it possible to apply
H -matrices to many realistic high-frequency problems.
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k N memory (Mb) compression (%) time (sec) Growth rate β

1 114 0.19 94.6 8.3E-2 -
5 2136 39.6 56.9 0.53 1.83
10 7832 255 27.3 2.29 1.43
20 30 404 1.62E3 11.5 16.6 1.36
30 68 078 4.75E3 6.71 36.6 1.34
40 120 500 1.03E4 4.63 72.4 1.35
50 188 146 1.84E4 3.41 1.3E2 1.30
60 270 276 2.99E4 2.68 2.05E2 1.33
70 367 276 4.44E4 2.16 3.22E2 1.30
80 480 024 6.37E4 1.81 4.67E2 1.34

Table 1 The performance of the H -matrix compression of the single-layer boundary operator V
on the unit sphere with varying wavenumber.

4.3 Modern developments

The standard H -matrix approximations are popular for many applications because
of their ease of implementation and relatively good performance. However, recent
FMM developments can significantly outperform classical H -matrix techniques.
While FMM uses hierarchical basis information to propagate information from the
sources to the targets this is not the case for H -matrices. A remedy for this is given
by H 2-matrices [8]. These are algebraically equivalent to FMM and refine the H -
matrix format by exploiting hierarchical information within the cluster bases. This
reduces the complexity of compression and matrix-vector product for low-frequency
problems to O(N) instead of O(N logN). A novel development specifically for high-
frequency problems are wideband H -matrix techniques. They exploit that within a
cone of opening angle θ ∼ 1

k the source and target clusters admit low-rank represen-
tations even for large wavenumber [23]. The difficulty is that these novel wideband
H -matrix approaches need to deal with a very large number of small block clus-
ters. The implementation in [6] uses a mixture of H -matrix approximations for the
near-field and H 2-matrix approximations for the far-field to efficiently deal with
this large number of block clusters.

5 High-frequency boundary element simulations with BEM++

Boundary integral formulations can conveniently be implemented with the open-
source library BEM++ [42]. As will be shown in this section, only high-level in-
structions are necessary to perform a BEM simulation. Apart from the code snippets
in this section, an IPython notebook of the OSRC-preconditioned Burton-Miller for-
mulation can be downloaded from the BEM++ website (www.bempp.org).
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5.1 Creating and solving an OSRC-preconditioned Burton-Miller
formulation

In the following we will describe the implementation and solution of the OSRC-
preconditioned Burton-Miller formulation for the scattering of a plane wave incident
field

uinc(x,y,z) = eikx

which travels in the x-direction.
The BEM++ framework can be used as a Python library, imported with the usual

command.

import bempp.api

The first step for the implementation of a boundary element simulation is to specify
the model data such as incident wave field and scatterer object. In this example we
specify the incident field by defining a corresponding Python function. Other ways
of specifying boundary data are also possible.

A Python function that specifies an incident field takes as input arguments the
location x, normal direction n, and optionally the region domain_index of the
object. The following two functions specify the incident field and its normal deriva-
tive. The NumPy array result stores the value of the function in each dimension.

k = 4.5
def dirichlet_fun(x, n, domain_index, result):

result[0] = np.exp(1j*k * x[0])
def neumann_fun(x, n, domain_index, result):

result[0] = 1j*k * n[0] * np.exp(1j*k * x[0])

Several canonical objects can readily be created with BEM++, such as a sphere,
cube and ellipsoid. Optionally, the mesh size h can be passed, e.g. to guarantee an
oversampling of ten elements per wavelength. The import of arbitrary triangular
surface meshes in Gmsh format [27] is also possible. Alternatively, the node and
connectivity information of a mesh can be specified. In the following we define the
mesh of an ellipsoid with radius 3 in the x-direction and 1 in the other directions.

h = 2*np.pi / (10 * k)
grid = bempp.api.shapes.ellipsoid(3, 1, 1, h=h)

As finite element space, the BEM++ library provides continuous and discontinuous
polynomial function spaces up to high-order and also function spaces defined on the
barycentric mesh. Here, we only need the standard P1-elements.

space = bempp.api.function_space(grid, ’P’, 1)

The native BEM++ object GridFunction provides functionality to store bound-
ary data of the wave fields and also projections of the excitation field onto the bound-
ary element space.



Efficient BEM for high-frequency Helmholtz systems 17

dirichlet_data = \
bempp.api.GridFunction(space, fun=dirichlet_fun)

neumann_data = \
bempp.api.GridFunction(space, fun=neumann_fun)

The creation of the boundary integral operators requires the specification of the
mapping properties on the boundary element spaces, i.e., the domain, range and
dual-to-range (test) space. For Galerkin discretization only the domain and the test
space are required. The range space allows the implementation of an operator al-
gebra that automatically creates the correct mass matrix transformations. This will
be needed in the following. The OSRC-approximated NtD operator only requires
one space object associated with a space of continuous functions to discretize the
underlying Laplace-Beltrami operator, where it is always assumed that the domain,
range and dual to range space are identical.

id = bempp.api.operators.boundary.sparse.\
identity(space, space, space)

from bempp.api.operators.boundary.helmholtz import *
dlp = double_layer(space, space, space, k)
hyp = hypersingular(space, space, space, k)
ntd = osrc_ntd(space, k)

The created boundary integral operators are abstract objects, for which basic linear
algebra operations such as addition and multiplication are available. The BEM++
library will take care of the correct mapping properties and uses mass-matrix trans-
formations where necessary. Combined field boundary integral formulations can
thus conveniently be created with the following high-level instructions.

bm_osrc_model = 0.5 * id - dlp - ntd * hyp
bm_osrc_data = dirichlet_data - ntd * neumann_data

Here, we have shown the creation of the OSRC-preconditioned Burton-Miller for-
mulation (25). Other formulations can be implemented similarly.

So far, we have defined the boundary integral formulation with abstract objects.
The actual discretization of the operators is not being performed until necessary
or explicitly called. Instead of calling the weak formulation, we opt to compute
the strong formulation which is the weak formulation with additional mass ma-
trix preconditioning. By default, the matrix assembly is performed with H -matrix
compression enabled. The right-hand-side vector is given by the coefficients of the
excitation data.

bm_osrc_matrix = bm_osrc_model.strong_form()
bm_osrc_rhs = bm_osrc_data.coefficients

The obtained matrix and right-hand-side vector can be interpreted by the SciPy li-
brary. This allows for solving the discrete system with its GMRES implementation.

from scipy.sparse.linalg import gmres
bm_osrc_sol,info = gmres(bm_osrc_matrix, bm_osrc_rhs)
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The surface potential can readily be visualized with e.g. Gmsh but BEM++ also
provides functionality to compute the scattered field outside the boundary. For this,
an array of locations points have to be created on which the exterior field will be
computed.

bm_osrc_pot = bempp.api.GridFunction(space, \
coefficients=bm_osrc_sol)

from bempp.api.operators.potential.helmholtz import *
dlp_nearfield = double_layer(space, points, k)
bm_osrc_scattered = dlp_nearfield * bm_osrc_pot

The resulting field can then be exported for further processing or directly plotted
using a Python plotting library.

5.2 Numerical results

In this section we present some numerical results on canonical test shapes which
demonstrate the performance of the formulations discussed in the previous sections.
An application problem with realistic data from medical engineering will be pre-
sented in Section 6.

5.2.1 Stability in the presence of resonances

A prime advantage of the combined field integral equations over simpler formu-
lations is stability at resonance frequencies. For example, the double-layer for-
mulation (17) has a nontrivial nullspace at resonance frequencies, which are ex-
plicitly known for special geometries such as a cube. To this end, let us con-
sider a unit-sized cube near the two resonances of k = π

√
1+1+32 = 10.42 and

k = π
√

1+22 +32 = 11.75. The mesh is created with an oversampling of ten ele-
ments per wavelength.

grid = bempp.api.shapes.cube(h=2*np.pi/(10*k))

The incident wave field is given by a plane wave field traveling in the positive x-
direction and P1-elements are used for discretization. As a linear solver, the GMRES
method available from the SciPy library has been used with a tolerance of 1.0E-5.

As can be seen in Fig. 2, the number of iterations used by the GMRES solver
clearly depends on the choice of boundary integral formulation. The number of iter-
ations for the Burton-Miller formulation and its preconditioned variant are constant
for this small frequency range. The peaks at the resonance frequencies indicate the
breakdown of the double-layer formulation. While at these low frequencies the con-
vergence is still reasonable, this becomes problematic for high frequencies where
the modal density increases.
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Fig. 2 The GMRES convergence for different model formulations near two resonance frequencies.

5.2.2 Performance with frequency at an re-entrant cube

Although the combined field formulations are stable with respect to resonances,
their convergence will deteriorate when increasing the frequency. The use of regu-
larization is expected to improve the convergence, as explained in Section 2.3. Here,
we will test this on a re-entrant cube of unit dimension, meshed with an oversam-
pling of ten elements per wavelength.

grid=bempp.api.shapes.reentrant_cube(h=2*np.pi/(10*k))

The solution of the Burton-Miller formulation for k = 37 has been depicted in Fig. 3.
For this wavenumber, the size of the object measures ten wavelengths across and
28 068 degrees of freedom are present.

The performance with respect to frequency of four different formulations will
be assessed with this test case: the Burton-Miller formulation (18), its OSRC-
preconditioned variant (25), the Brakhage-Werner formulation (21), and its complex-
wavenumber single-layer regularized variant (27). For the standard Brakhage-Werner
formulation we choose R = 1/k as a resemblance to the Burton-Miller formulation.
As linear solver, the GMRES algorithm without restart is being used. Both the num-
ber of iterations and the wall-clock time of the linear solver are depicted in Fig. 4.

The experiment clearly shows that the use of regularization does have a big im-
pact on the performance of the linear solver. The OSRC preconditioner and complex
single-layer regularization both reduce the number of iterations considerably com-
pared with the classical Burton-Miller and Brakhage-Werner formulations. The re-
duction of number of iterations with the preconditioning strategies was not achieved
at the price of much computational overhead. More precisely, compared to the clas-
sical formulations, the preconditioning results in an average overhead of 1.6% and
1.8% per iteration for OSRC and complex single-layer regularization, respectively.
However, both require additional initial setup time. For the OSRC this is the compu-
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Fig. 3 The magnitude of the surface potential on the re-entrant cube for wavenumber k = 37.

tation of sparse LU decompositions of the surface Helmholtz problems and for the
complex-single layer regularization it is the H -matrix assembly of the compressed
single-layer operator. For the presented examples, both are small compared to the
assembly times of the other operators involved in the Burton-Miller and Brakhage-
Werner formulations.

6 HIFU treatment

This section describes the application of the fast BEM techniques to a challenging
problem of importance in medical engineering. To reduce the health risks of open
surgery, clinicians are increasingly inclined to use modern non-invasive techniques,
such as High-Intensity Focused Ultrasound (HIFU) treatment. Computational meth-
ods have the potential to improve the patient-specific treatment planning. Here, we
will consider the case of transcostal HIFU, where the presence of the ribs has a sig-
nificant influence on the sound propagation. Since the computational model is based
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Fig. 4 The GMRES convergence for different model formulations on a re-entrant cube.

on an exterior scattering problem, the BEM is perfectly suited as numerical solution
technique.

6.1 Application to a realistic high-frequency problem in HIFU
treatment

Surgery is the most effective local therapy for treating solid malignancies [18]. How-
ever, surgery to remove tumors in specific organs, such as the liver, still presents con-
siderable challenges [14], with prognoses for the patients remaining poor [47]. The
significant negative side effects associated with surgical interventions have led to
an ongoing quest for safer, more efficient and better tolerated alternatives. In recent
years, there has been a notable shift away from open surgery towards less invasive
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procedures, such as laparoscopic and robotic surgery, and also energy-based meth-
ods for in situ tumor destruction. The latter include embolization, radiofrequency,
microwave and laser ablation, cryoablation and HIFU [18]. HIFU is a medical pro-
cedure which uses high-amplitude ultrasound to heat and ablate a localized region of
tissue. Typically, the ultrasound is generated by a focused transducer located outside
the human body. As the ultrasound propagates through tissue and at high acoustic
intensities, absorption of the energy can induce local tissue necrosis targeted within
a well-defined volume without damaging the overlying tissue [45]. Currently, HIFU
is the only non-ionizing intervention capable of completely non-invasive ablation.
The clinical acceptance of HIFU has grown in recent years, leading to its FDA ap-
proval for treating uterine fibroids, prostate cancer and for the palliative treatment
of bone metastases.

Whilst the feasibility of HIFU for the treatment of cancer of the liver has been
demonstrated [19], there remain a number of significant challenges which currently
hinder its more widespread clinical application. The liver is located in the upper-
right portion of the abdominal cavity under the diaphragm and to the right of the
stomach. When administering a HIFU treatment in view of destroying tumors of the
liver, the ultrasonic transducer is positioned outside the body and typically coupled
to the abdomen via a region of water. Rib bone, which both absorbs and reflects
ultrasound strongly, may therefore narrow the acoustic window between the trans-
ducer and the tumor. Hence, a common side effect of focusing ultrasound in regions
located behind the rib cage is the overheating of bone and surrounding tissue, which
can lead to skin burns at the ribs [39]. Furthermore, the presence of ribs can lead to
aberrations at the focal region due to effects of diffraction [25].

One of the minimal technical specifications of a HIFU system for the treatment
of liver tumors should be to transmit energy either in between, below, or through the
ribs without damaging the ribs or causing a skin burn [46]. A means of addressing
this requirement is via a patient-specific treatment planning protocol based on nu-
merical simulations carried out using the patient’s anatomical data. Such a protocol
could provide a standardized framework by which HIFU may be optimized to treat
tumors of the liver without adverse effects. The role of numerical models also ex-
tends to pre-clinical experiments on soft tissue and bone mimicking phantoms. As
there remain substantial metrological challenges when carrying out such physical
experiments, validated numerical models play a key role in planning this work and
interpreting its outcome.

6.2 Methodology

As the ultrasonic waves propagate from the surface of the transducer to the focal re-
gion, they will encounter water and soft tissue, including skin and fat, and rib bone,
before finally reaching the liver. Different soft tissue types tend to bear acoustic
properties similar to those of water. The speed of propagation of longitudinal waves
in these media is generally comparable, and is approximately 1500 m·s-1 [21]. The
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same is true of the density [21], which is around 1000 kg·m-3. Ribs however act as
strong scatterers, owing to their higher acoustic impedance relative to that of soft
tissue. A first step towards treating the problem of scattering of a HIFU field by the
rib cage is therefore to consider the ribs as being immersed in an infinite homoge-
neous medium with acoustic properties representative of those of soft tissue. The
modeling of the scattering of the field of a HIFU array by human ribs can then be
considered as an exterior scattering problem. This can be efficiently treated using
the BEM [26]. The optimal transducer excitation frequency for HIFU of the liver
has been established to be around 1 MHz – 1.5 MHz. At frequencies below 1 MHz,
the cavitation threshold in tissue decreases, thus creating the risk of unwanted cavi-
tation at pre-focal regions. At frequencies above 1.5 MHz, since attenuation in soft
tissue is roughly proportional to frequency, the resulting focal intensities may be
too low to achieve tissue necrosis, particularly in the case of deep-seated tumors.
For transcostal HIFU, this implies that the wavelengths in soft tissue will be around
1.0 mm – 1.5 mm. The computational domain being approximately 20 cm × 20 cm
× 20 cm reinforces the notion that it is advantageous to employ a computational
method which does not rely on a volumetric mesh, which strengthens the case for
using the BEM.

The advent of multi-element array transducers driven by multi-channel electron-
ics offers significant advantages over concave single-element piezoelectric devices.
Multi-element transducers have the ability to compensate for tissue and bone het-
erogeneities and to steer the beam electronically by adjusting the time delays in each
channel to produce constructive interference at the required location, thus minimiz-
ing the requirement for mechanical repositioning of the transducer during treatment.
A pseudo-random arrangement of the circular planar elements on the surface of the
transducer is often opted for. This has been shown to minimize the formation of side
lobes when design constraints place a limit on the amount of elements that can be
used and on the spacing between these elements [24]. Fig. 5 depicts a mesh of four
ribs, together with a spherical section transducer array, with 256 pseudo-randomly
distributed elements. The array is positioned so that its geometric focus is located at
an intercostal space, approximately 3 cm deep into the rib cage.

In order to address the scattering problem, a suitable description of the incident
acoustic field and its normal derivative on the surface of the ribs must be arrived at.
In the case of multi-element transducers, the incident acoustic pressure field is com-
monly modeled as a superposition of plane circular piston sources [24]. The spatial
component of the acoustic field of such a circular source may be represented by the
Rayleigh integral, which can be solved using numerical quadrature techniques [48].

6.3 Computational results

In Section 6.2, it was proposed that, in first instance, a physical model for HIFU
treatment planning of the liver could be formulated as an exterior scattering prob-
lem. The BEM is ideally suited to tackle such problems. The strict requirement of
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Fig. 5 Position of ribs relative to a HIFU array for an intercostal treatment, approximately 3 cm
deep into the rib cage.

frequencies in the MHz range necessitates the use of fast solution techniques, such
as operator preconditioning and matrix compression. Here, we will use the OSRC-
preconditioned Burton-Miller formulation with H -matrix compression since this
has experimentally proved to be the most effective technique.

The scattering object is given by a human rib cage model [25], consisting of the
four ribs closest to the liver. The ribs are rigid and immersed in an infinite domain
where the speed of sound is 1500 m·s-1, as is typical for water and soft tissue. The
ultrasound excitation is generated by a multi-element transducer array of 256 piston
sources. The field generated by each element is modeled with a numerical quadra-
ture rule, resulting in a total of 38 144 point sources. The frequency of the ultrasound
field is 1 MHz, which corresponds to a wave length of 1.5 mm. The diameter of the
ribcage model is 20.3 cm, which makes it 135 times larger than the wave length.

The surface mesh at the ribs consists of triangles with a maximum width of
0.18 mm, thus representing each wavelength with at least 8 elements. The boundary
element space of continuous piecewise linear elements contains 479 124 degrees of
freedom. The experiment has been performed on a high-specification workstation of
eight quad-cores with a clock rate of 2.8 GHz each. The shared memory is 264 GB.

Standard values for the parameters in the OSRC-preconditioner have been used,
namely a size of 4 and a branch cut of π/3 for the Padé approximation. The GM-
RES solver of SciPy has been used with a default termination criterion of 10−5 and
finished the solution in 19 iterations and 6:59 minutes only.
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The assembly of the dense matrices has been performed with H -matrix com-
pression with an ε-value of 10−5, a maximum rank of 1000 and a maximum block
size of 100 000. The assembly of the boundary operators took 5 hours and 16 min-
utes. Where the storage of dense matrices would have needed in excess of 7 TB
memory, the compressed matrices required 194 GB only. The compression rates are
2.08% and 3.31% for the single-layer and hypersingular boundary operator, respec-
tively.

Fig. 6 The computational results of the HIFU model. At the surface the magnitude of the surface
potential ϕ = utot|Γ and on the exterior plane with x = 0 the magnitude of the total wave field
uinc +K ϕ = utot have been visualized.

The total field exterior to the rib cage was computed on a vertical plane and is
visualized in Fig. 6. The reflected waves are clearly visible, along with a shadow
region behind the ribs. The influence of the scattering on the focal region is not
significant in this configuration: the energy is still bundled in the desired region.
The realistic wave field for this challenging object confirms the capability of our
modern BEM implementation to simulate acoustic scattering at high frequencies.
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7 Discussion

In this chapter we have demonstrated efficient BEM formulations for exterior acous-
tic problems, their fast implementation using the open-source BEM++ library, and
performance results when applied to a realistic high-frequency problem. Modern
preconditioning strategies for the Burton-Miller formulation based on OSRC or
complex wavenumber single-layer boundary operators are highly effective and lead
to a small number of GMRES iterations for each right-hand side. Even though the
applicability of the BEM to large-scale simulations has been confirmed in this chap-
ter, there is still a need for faster computations. A goal is to incorporate the BEM
in an optimization routine for the configuration of HIFU transducer arrays. This ne-
cessitates the solution of the BEM formulation for multiple right-hand-side vectors.
When such an implementation could be achieved effectively, this would bring the
BEM a step closer to actual application in a clinical environment.

Significant speed improvements are still possible with respect to the discretiza-
tion of the boundary operators. While the H -matrix based discretization described
in this chapter performs well for many Helmholtz problems, a direct improvement
is possible by moving towards H 2-matrix techniques. They allow for a consider-
able memory reduction [8], but similar to H -matrices, they are not asymptotically
optimal at high frequencies.

For problems with only few right-hand sides, high-frequency FMM methods [16,
30] are very efficient. Yet, they are less suited for problems with many right-hand
sides due to their often slower matrix-vector product. Wideband hierarchical matrix
techniques such as the one presented in [6] combine fast algebraic matrix-vector
products with asymptotic optimal complexity as k→ ∞.

A potential improvement to the limitations at high-frequencies may be the de-
velopment of fast approximate direct solvers. While there has been considerable
progress for low-frequency problems (see e.g. [10]), the development of fast approx-
imate direct solvers that scale well as k→ ∞ remains elusive. The most promising
approach may be based on butterfly compression techniques. A butterfly recompres-
sion scheme for an approximate H -matrix LU decomposition is described in [31].
The results in this paper are impressive but still require an initial compression using
standard H -matrices.

While there is a wealth of software available for finite element discretizations
there are still few open-source packages for boundary element problems. The
BEM++ library is continuously being developed and aims to integrate modern
technologies as they become relevant for practical applications. We have given a
demonstration of BEM++ in this chapter. Many more example applications includ-
ing Maxwell problems are described at the website www.bempp.org.
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