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A B S T R A C T   

Therapeutic ultrasound is a promising non-invasive method for inducing various beneficial biological effects in 
the human body. In cancer treatment applications, high-power ultrasound is focused at a target tissue volume to 
ablate the malignant tumour. The success of the procedure depends on the ability to accurately focus ultrasound 
and destroy the target tissue volume through coagulative necrosis whilst preserving the surrounding healthy 
tissue. Patient-specific treatment planning strategies are therefore being developed to increase the efficacy of 
such therapies, while reducing any damage to healthy tissue. These strategies require to use high-performance 
computing methods to solve ultrasound wave propagation in the body quickly and accurately. For realistic 
clinical scenarios, all numerical methods which employ volumetric meshes require several hours or days to solve 
the full-wave propagation on a computer cluster. The boundary element method (BEM) is an efficient approach 
for modelling the wave field because only the boundaries of the hard and soft tissue regions require dis
cretisation. This paper presents a multiple-domain BEM formulation with a novel preconditioner for solving the 
Helmholtz transmission problem (HTP). This new formulation is efficient at high-frequencies and where high- 
contrast materials are present. Numerical experiments are performed to solve the HTP in multiple domains 
comprising: (i) human ribs, an idealised abdominal fat layer and liver tissue, (ii) a human kidney with a peri
nephric fat layer, exposed to the acoustic field generated by a high-intensity focused ultrasound (HIFU) array 
transducer. The time required to solve the equations associated with these problems on a single workstation is of 
the order of minutes. These results demonstrate the great potential of this new BEM formulation for accurately 
and quickly solving ultrasound wave propagation problems in large anatomical domains which is essential for 
developing treatment planning strategies.   

1. Introduction 

High-intensity focused ultrasound (HIFU) therapy is a procedure 
which uses high-intensity ultrasound to thermally ablate a localised 
region of diseased tissue, leaving the surrounding healthy tissue intact. 
A successful clinical outcome requires a patient-specific HIFU treatment 
plan. The plan must be achieved prior to the intervention quickly and 
accurately. Excitation protocols of a multi-element transducer may then 
be determined [1], thus ensuring that diseased tissue is accurately ab
lated. This is usually achieved by recursively solving for the wave field 
in the body (i.e. the forward problem) using a linear full-wave model 
Gélat et al. [1,2]. The use of a linear full-wave model is physically 
justified as nonlinear propagation of ultrasonic waves is mainly con
fined to the focal region of the field [3]. This linear field (focusing 
vector) can then serve as input data into a nonlinear model so that 
precise thermal dose metrics may be accurately determined. 

To date, several approaches have been used to model acoustic 
pressure fields for HIFU treatment planning applications. Modified 
Rayleigh-Sommerfeld integral methods, where the propagating medium 
is decomposed into multi-layered media, have been the subject of 
various studies [4–8]. This class of simulation method has a relatively 
low implementation effort and does not require the use of dense com
putational meshes. However, whilst Modified Rayleigh-Sommerfeld 
integral methods accounts for refraction during the transmission of an 
acoustic wave through a layered structure, they do not capture multiple 
reflections and cannot predict scattering resulting from step changes in 
tissue properties. The hybrid angular spectrum approach (HAS) [9,10] 
extends the angular spectrum method to provide a computationally 
efficient alternative to full-wave ultrasound simulation methods, al
lowing it to cope with more complex geometries than modified Ray
leigh-Sommerfeld methods [9]. However, HAS does not resolve the full- 
wave physics of multiple scattering and internal reflections within each 
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medium [6,10]. Such deficiencies can be addressed using full-wave 
models such as finite-difference time domain (FDTD) approaches  
[11–13], and k-space pseudospectral methods [5,14,15]. In 3D how
ever, these methods require the use of very dense volumetric grids to 
counteract the accumulation of numerical dispersion [5]. For example, 
in recent transcranial simulations, 12 grid points per wavelength were 
used [12]. k-space methods have been shown to require less dense 
computational grids than FDTD methods to provide the same level of 
accuracy [16]. Nevertheless, substantial computational challenges re
main in trans-abdominal HIFU due to the large domain dimensions 
(typically × ×20 20 20 cm3), and the comparatively small wavelengths 
involved (around 1.5 mm in soft tissue at 1 MHz). The use of Cartesian 
grids as well as perfectly matched layers used in FDTD and k-space 
pseudospectral methods also lead to numerical artifacts, the well- 
known staircasing effect and spurious reflections from the boundary of 
the computational domain, respectively. 

In view of reducing the computational overheads, hybrid and mixed 
domains have formed the basis of some studies. A hybrid method in
cluding the Rayleigh-Sommerfeld integral, k-space pseudospectral 
method, and angular spectrum method was proposed [17]. This method 
forgoes a volumetric grid over the whole of the computational domain, 
confining the former to the heterogeneous region (i.e. in the vicinity of 
the ribs). A mixed domain method using an implicit analytical solution 
was described, which approximates the forward propagation of non
linear waves in weakly heterogeneous media [18]. Whilst potentially 
more computationally efficient than their full-wave counterparts, the 
above approaches are effectively one-way propagation models and 
compromise the wave physics at the interfaces of localised hetero
geneities. Additionally, the method proposed by Gu and Jing [18] 
precludes scenarios with high contrast scatterers such as bone. 

The most promising full-wave computationally efficient 3D nu
merical method for HIFU treatment planning of transcostal tumours is 
currently the boundary element method (BEM) [19,20]. In BEM, the 
partial differential equation that models the wave propagation is es
sentially reformulated into a boundary integral equation defined on the 
interfaces. The boundary solutions and potential integrals are used to 
calculate the field at any point in the domain. Being based on Green’s 
function representations, BEM is almost devoid of the numerical dis
persion and dissipation effects commonly associated with numerical 
schemes such as k-space pseudospectral and finite-difference time do
main methods [21,22]. For sound-hard scatterers, issues of long com
puting times have been overcome through analytical preconditioners 
used in conjunction with hierarchical matrix ( -matrix) compression 
techniques [20]. 

In order for such schemes to be incorporated into a clinically-re
levant treatment planning framework, it is vital that they are extended 
to include the ability to deal with some degree of tissue heterogeneity. 
Whilst soft tissue such as skin, muscle and fat have similar compres
sional wave speeds and densities [23], fat attenuates ultrasound energy 
significantly and causes beam aberration at the focus. This impedes 
focal heating during HIFU treatment of renal cancer, due to the pre
sence of perinephric fat [15,24,25]. It also remains to be established to 
which extent ultrasound can penetrate rib bone and how important it is 
to account for this phenomenon when modelling the propagation of 
ultrasound in the abdominal region. The ability to model the propa
gation of ultrasound through ribs and assess the importance of this 
relative to the case of locally reacting ribs [2] would be beneficial, 
particularly when studying the heat transfer mechanisms which lead to 
skin burns in HIFU patients [26]. There is therefore a requirement for 
resorting to multi-domain BEM to deal with the treatment planning 
complexities outlined above. 

A number of multi-domain acoustic BEM formulations have been 
proposed [27–29]. In these approaches, the boundary integral equation 
(BIE) was applied to each domain. Due to the matrices resulting from 
domain discretisation being fully populated, the set-up time and 
memory consumption scale quadratically with respect to the number of 

degrees of freedom [30]. Fast BEM schemes have been introduced for 
the Helmholtz equation, resulting in a quasilinear complexity. The 
merits of such methods, namely the fast multipole method and hier
archical matrices, were discussed by Brunner et al. [30] where a scat
tering problem involving a 22 m long, 2 m thick cylinder immersed in 
water was analyzed for excitation frequencies up to 200 Hz. Such fast 
BEM schemes have been applied to multi-domain Helmholtz problems. 
A fast multipole BEM method for 3D multi-domain acoustic scattering 
problems was described by Wu et al. [31]. 

The above studies investigate cases where the ka (where k is the 
wavenumber and a is the characteristic size of the domain) is sub
stantially less than that encountered in HIFU applications. Determining 
which BEM scheme is better suited for solving multi-domain Helmholtz 
problems at frequencies relevant to HIFU problems remains an active 
area of research. Previously, a fast BEM model was developed to solve 
the scattering from a single and perfectly rigid domain [19,20]. In this 
paper, we present a new fast multiple-domain transmission BEM model 
to compute both the scattered and transmitted ultrasonic fields in soft- 
tissue and bone. This formulation employs a novel preconditioner 
which is developed for high-frequency high-contrast problems. This 
advanced preconditioning together with -matrix compression tech
niques enable the wave equation to be solved in large domain sizes 
relative to the wavelengths involved. Therefore, it allows for realistic 
simulations using anatomical data and provides insightful information 
about HIFU fields inside the body. Furthermore, the model is generic 
and can therefore be applied to therapeutic ultrasound scenarios not 
discussed in this paper. 

The formulation is presented in Section 2. The equations were im
plemented and solved using the open source library Bempp [32]. The 
simulations were validated against analytical solutions, where avail
able. Subsequently, the scattered field was calculated for the following 
computational domains: i) an idealised layer of abdominal fat, human 
ribs and liver tissue, and ii) a human kidney model and a perinephric fat 
layer, see Section 3. In both scenarios, the incident field is generated by 
a spherical section array transducer operating at the frequency of 
1MHz. Finally, the suitability and limitations of this BEM scheme for 
use in HIFU treatment planning are discussed. 

2. Model formulation 

In this paper, we consider the forward problem only and aim to 
develop a fast and efficient solver for linear ultrasonic wave propaga
tion in a medium made of the exterior domain 0 and non-overlapping 
domains = …j n, 1, ,j with different physical properties, i.e. density, 
speed of sound and attenuation coefficient. A single-trace formulation 
which involves one Dirichlet and one Neumann data at each point of 
each interface is used and implemented. As a result, this formulation 
holds true where only two domains are in contact with each other, thus 
not allowing for triple points. 

2.1. Wave equation 

The linear full-wave propagation is modelled by the Helmholtz 
system as follows 
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the Dirichlet and Neumann traces associated with the domain j for 
= …j n1, , taken from the exterior(+)/interior(–), respectively. The 

wavenumber kj is complex with the positive real part equal to 2 /
where is the wavelength in meters, and the positive imaginary part 
being f b

0 where 0 is the attenuation coefficient in fneper m Hz ,1 b is 
the frequency in Hz and b is the exponent. This frequency power law 
model is used to account for the attenuation of wave propagation in soft 
and hard tissues [33]. The traces are defined as follows: 
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where n x( )j is the normal vector on the boundary j and points out
wards to the exterior of domain j (for both ±

N
j, traces), see Fig. 1. 

Here, p px x( ), ( )s inc , are the scattered and incident pressure fields in the 
exterior, p x( )j is the pressure field in j. For the sake of simplicity, the 
spatial variable x will be dropped from now on. 

The last line in Eq. (2) is the Sommerfeld radiation condition that 
requires the scattered waves to be outgoing in the unbounded domain 

0. 

2.2. Coupled boundary integral formulation 

The Calderón representation of the Helmholtz problem in the ex
terior domain 0 is given by, see Appendix A for the derivations, 

Id A =+ +p p1
2

,k stot0 (4) 

where + + +[ ]D N
T is the exterior Cauchy trace operator at Id= ,j

n j
1

is the identity operator, Ak0 is the Calderón operator evaluated with the 
wavenumber of the exterior domain, = +p p pstot inc is the total pressure 
in the exterior domain 0. Restricting the boundary integral operators 
to a single domain j results in 
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Here, Ak
ji
0 is the Calderón operator that takes the wavenumber k0

and maps a surface potential at i to j. The term A +pi j k
ji i,

tot0

accounts for all cross scatterings between domains i and j for 
= …i n i j1, , , . 

For the interior of domain j, the Calderón representation of the 
Helmholtz problem reads, see Appendix A for the derivations, 
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2
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where Ak
j
j is the Calderón operator evaluated in the interior of domain 

j. 
The boundary conditions shown in Eq. (2) can be represented as 

follows 
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Subtracting Eq. (5) from Eq. (8) produces 
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which rearranges to the final form of the formulation as follows 
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This equation is called the Poggio-Miller-Chan-Harrington-Wu-Tsai 
(PMCHWT) formulation for the multiple-domain HTP. This represents a 
set of linear equations which can be condensed into a block system 
A u b=k where 

A A
A A

A
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k
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and 
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j

j
j,
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,

inc (12) 

In the above equations the Calderón operator is a ×2 2 block matrix 
represented by 

A K V
W K

,k
j j j

j jj (13) 

where V K K W, , ,j j j j are the single layer, double layer, adjoint double 
layer, and hypersingular boundary integral operators, respectively, see  
Appendix A for their definitions. Thus, to construct the PMCHWT for
mulation for the HTP for n domains, i.e. to calculate Eq. (11), +n n4 ( 1)
boundary integral operators should be computed. 

2.3. Operator preconditioning 

The Galerkin method, also known as the method of moments, is 
used for the discretisation of boundary integral operators. The 
boundary j is meshed by triangular elements. The discrete for
mulation results in a linear system of equations which corresponds to 
the matrix problem =Au b where 

A= = …q r zA[ ] , , , 1, 2, ,rq k q r (14) 

Fig. 1. Schematic diagram of the multiple domains. Refer to the text for the 
details. 
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= …u u uu [ , , , ]z1 2 is the vector of unknown solution of the variational 
problem and = …b b bb [ , , , ]z1 2 with 

= +b p , .r
j

r
,

inc (15)  

Here, z is the number of degrees of freedom (dofs), q and r are the 
trial and test functions, and .,. is the standard L2 dual pairing. The test 
and trial functions are continuous piecewise linear functions on the 
triangular surface mesh. The reader is referred to [20,32] for further 
details. 

This linear discrete system of equations is usually ill-conditioned at 
high driving frequencies and acoustic impedance mismatch between 
the exterior and interior domains. Consequently, iterative solvers such 
as GMRES converge very slowly. Hence, to improve the convergence 
rate of the iterative solvers, the preconditioned continuous problem 
C A u C b=k

1 1 is solved instead where the operator C 1 is defined such 
that the spectral condition number of the preconditioned system is 
smaller than the original system. The operator preconditioners are de
signed using the mapping properties of the BIE operators – instead of 
the discretised matrix – which allows them to be easily combined with 
acceleration and compression algorithms [34,35]. 

The performance of conventional operator preconditioners of 
PMCHWT formulation substantially deteriorates in scenarios with large 
wavenumbers [36] and high contrast domains [37]. Such scenarios are 
common in HIFU treatment planning applications. Therefore, a new 
block-diagonal preconditioner was developed to regularise the 
PMCHWT equations for the multiple-domain Helmholtz transmission 
problem. This new preconditioner is based on the Neumann-to-Di
richlet, denoted by NtD, and Dirichlet-to-Neumann maps, DtN. NtD
maps the normal gradient of the pressure field on the boundary j to 
the pressure field on the surface. DtN performs the inverse map. These 
maps evaluated in the exterior domain satisfy the following relation
ships [38,39], 

V I K= ++ + +1
2

,j j j
DtN
, , ,

(16)  

W I K=+ + +1
2

.j j j
NtD
, , ,

The double layer operator ( +K j, ) and adjoint double layer operator 
( +K j, ) are compact on sufficiently smooth surfaces and therefore 

V+ +j j
DtN
, , and W+ +j j

NtD
, , are better conditioned than single layer and 

hypersingular operators. Thus, the DtN and NtD maps are used to build 
the following block-diagonal preconditioner 

C C C= =j i
j i

[ ]
0

,ji
j

1

(17) 

where 

C
+

+ .j
j

j
DtN
,

NtD
,

(18) 

The above preconditioner is designed to be a block-diagonal matrix. 
This has two major advantages. First, this results in fast matrix-vector 
operations which scale linearly with the number of domains rather than 
quadratically for full matrices. Second, the preconditioner is highly 
accurate since it is based on a model for close interactions at the surface 
of the scatterers (diagonal blocks of Ak) which have a larger impact on 
the overall accuracy of the solution relative to distant interactions. 

In order to use this preconditioner with the PMCHWT formulation, 
the Calderón operators should be vertically permuted to place the hy
persingular and single layer operators on the main diagonal. To 

preserve the RHS of Eq. (10), the blocks of the unknown vector 
= + +p pu [ ]j D

j
N
j T,

tot
,

tot are permuted as well. 
To implement this preconditioner, we need to calculate the DtN and 

NtD maps. These are non-local pseudo-differential operators with no 
closed-form solutions. However, an accurate approximation based on 
the high frequency asymptotics of them can be achieved using the on- 
surface radiation condition (OSRC) method [40,41]. The expressions of 
the NtD and DtN maps approximated by the OSRC approach are given 
by 

= +ik
k

1 ,DtN 2 (19a)  

= +
ik k
1 1 .NtD 2

1/2

(19b) 

where = +k k i where > 0 is a damped wavenumber and de
notes the Laplace-Beltrami operator. The damping avoids any singula
rities in the operators and is chosen as = k R0.4 1/3 2/3 with R the 
radius of the scatterer. This choice can be shown to be optimal for 
spherical objects and a good guideline for general geometries [42]. The 
square root operations in above equations are approximated with a 
Padé series expansion with NPade terms. Each term is a surface Helm
holtz equation with a different complex-valued wavenumber. The Ga
lerkin discretisation of which results in a set of sparse linear systems 
that can efficiently be solved with sparse LU factorisation. Hence, the 
preconditioner requires sparse arithmetic only, which causes little 
overhead compared to the dense arithmetic for the model formulation. 
The reader is referred to [19,20,39] for further details. Since the OSRC 
approximations of the NtD and DtN maps, Eqs. (19a) and (19b), are 
used to compute the elements of the preconditioner Eq. (17), it will be 
referred to as the OSRC block diagonal preconditioner. 

3. Numerical experiments 

The number of surface elements required by BEM to represent the 
wave propagation is of k( )2 which results in the memory footprint of 

k( )4 , as Galerkin discretisation of the boundary integral operators 
results in dense matrices. This prohibits the implementation of this BEM 
formulation for HIFU treatment planning on a typical computational 
platform. To alleviate this problem, the hierarchical matrix compres
sion with the tolerance set to 10 6 is used to assemble the discretised 
boundary integral operators in a compressed format. This technique is 
based on an adaptive cross approximation of boundary integral op
erators, the kernel of which is the Green’s function (see Appendix A). 
The regularity of the Green’s function increases with the distance be
tween the source and observer. Consequently, the elements of the 
matrix that correspond to these distant interactions are more regular 
than short distance interactions and can hence be approximated with 
smooth functions. Recursively using these properties for groups of 
elements results in a low-rank approximation of blocks of the matrix. At 
high frequencies, classical compression often deteriorates and effi
ciency bounds scale poorly for k , thus necessitating specialized 
directional compression techniques. On the contrary, computational 
benchmarks in Betcke et al. [20] confirm a significantly better perfor
mance than the asymptotic worst-case scenarios. In practice, excellent 
compression rates have been observed for the models considered here. 
Refer to van ’t Wout et al. [19] and Betcke et al. [20] for com
plementary information about hierarchical matrices and their applica
tion for solving Helmholtz problems. 

A workstation with 32 processors (Intel® Xeon(R) CPU E5-2683 
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v4@2.10 GHz) and 512 GB RAM was used for performing the following 
numerical experiments. First, the preconditioned formulation and its 
implementation was validated against analytical solutions for a model 
problem consisting of a spherical object in Section 3.1. Subsequently, 
the scattered field from i) human ribs and an idealised abdominal fat 
layer, ii) a human kidney and a perinephric fat layer, exposed to the 
acoustic field generated by a HIFU array transducer is computed and 
discussed in Section 3.2. 

The presented formulation was implemented in Python using the 
open source Bempp library [32], version 3.3.4. The GMRES algorithm 
of the SciPy library with the restart parameter set to 100 was used for 
solving the discrete system of equations. The GMRES scheme terminates 
when the relative residual is below a specified relative tolerance, which 
was set to 10 5. The efficiency of the OSRC preconditioner Eq. (19) is 
affected by parameters R and NPade. Although one can choose different 
R and NPade for different domains, one set of values were selected to 
construct the preconditioner for the sake of simplicity. The larger NPade
the more accurate the approximation of DtN and NtD maps are, but at 
the cost of more numerical operations at each iteration. The numerical 
investigations demonstrate the following points: (i) a relatively small 
size of Padé series, 4 for spheres and 8 for anatomical meshes, is suf
ficient to calculate the OSRC preconditioner and achieve expected 
performance, (ii) setting R to a value of one order of magnitude smaller 
than the characteristic size of the largest domain in the model leads to a 
fast convergence. 

3.1. Single sphere model 

The analytical solution for a penetrable acoustic sphere is available 
using the classical series expansion method [43,44]. This single sphere 
model has been extensively used in the literature as a standard model to 
validate and characterise the accuracy of numerical methods against 
analytical solutions. Likewise, in order to validate the new formulation 
presented in this paper and perform sensitivity analyses, the HTP pro
blem of a single sphere object impinged by a plane wave is considered 
as the first numerical experiment. The driving frequency is assumed to 
be 1 MHz which is typically used in HIFU applications for the liver and 
kidney. The exterior medium is assumed to be water and the sphere 
possesses the physical properties of (i) rib bones and (ii) abdominal fat. 
The physical properties are listed in Table 1. The diameter of the sphere 
is 1 cm which is large enough to include multiple interior reflections at 
the wavelength of the sphere material, and which is of the order of 
magnitude of the anatomical heterogeneities considered in Section 3.2 
of this paper. The problem was solved for a range of mesh densities, the 
latter parameter corresponding to the number of elements per wave
length associated with the material which has the smallest speed of 
sound. The value of = ×R 5 10 m4 is used for all the sphere simula
tions. 

In order to compare BEM and analytical results, the l norm2 of the 

difference in the total pressure, =p p ptot,err tot tot,an was calculated 
where ptot is the computed pressure in the field by the BEM formulation 
and ptot,an is the analytical total pressure. The computational grid is a 
uniform ×200 200 grid spanning from R3 to R3 , where R is the radius 
of the sphere, through the centre of the sphere. The predictions of the 
total field becomes more accurate, in the sense of l norm2 , as the 
mesh density increases, see Fig. 2. Nevertheless, with rather coarse 
surface meshes of 6 elements per wavelength, the error is below 3%. 
This choice permits the prediction of the total field relatively accurately 
and fast– the computation time per iteration (denoted by t) is about 
0.2 s for both fat and bone spheres, see Fig. 3b. Bone is a high contrast 
material with =Z Z/ 5.2int ext where Zint and Zext are the characteristic 
specific acoustic impedances of the interior and exterior domains. For 
such materials, making the surface mesh finer improves the con
vergence rate of the iterative solver, as shown in Fig. 3a. However, this 
comes at the expense of longer computation time per iteration because 
the matvec operations (the product of a matrix by a vector) of larger 
matrices need to be carried out. This improvement is negligible when 
the material contrast is small, i.e. fat with =Z Z/ 0.86int ext . 

3.2. Anatomical model problems 

There is currently significant interest in both the research and 
clinical communities in the use of HIFU for the thermal ablation of liver 
and renal tumours [47]. This modality has been deployed into the clinic 
and has been the subject of a number of clinical trials. Currently, 
treatment planning is non-existent to rudimentary, relying instead on 
MR thermometry for guidance. The latter modality suffers from un
certainties which are dependent on the tissue type being monitored. In 
view of developing treatment plans, we will consider these two ana
tomical problems in this section and apply the new formulation pre
sented in this paper to solve the forward problem. The results presented 
here are calculated for an incident field generated by a HIFU array 
transducer. The radius of the curvature of the array is 18 cm, the f- 
number is 1.18 and the focal point is located at the global origin by 
convention. The array features a pseudo-random spatial distribution of 
256 piston elements, each of 6 mm diameter and facing towards the 
focal point. The details of calculating the HIFU incident field are pre
sented in previous works, e.g. see [19], and will not be repeated here. 

Table 1 
Physical properties of the domains [45,46].       

domain c 0 b  
[kg m 3] [m s 1] [Np m 1 at 1 MHz] [DL]  

ribs 1178 2117.5 47 1 
fat 917 1412 9.3 1 

kidney 1066 1554.3 2.8067 1 
liver 1070 1640 7 1.30 
water 1000 1500 0.015 2 

Fig. 2. The percentage of the l norm2 of the difference between the computed 
total pressure by BEM and the analytical total pressure at different mesh den
sities. The single sphere model is used. 
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The first anatomical example involves a clinically relevant scenario 
of targeting a tumour of the liver located at an intercostal space 3.5 cm 
behind ribs 10 and 11, on the right side, see Fig. 4. Considering that the 
incident wave is a highly focused beam, the obstacles outside the beam 
width have negligible effect on the pressure at the focus and can 
therefore be eliminated to reduce the size of the problem. Hence, in
stead of using the model of the complete rib cage we retain only ribs 10 
and 11 which are in the path of the HIFU beam. Therefore, the scat
tering objects (domains) are i) an idealised abdominal fat layer located 

in the vicinity of the anterior of the ribcage, and ii) two human ribs. 
These two domains are immersed in an infinite exterior domain pos
sessing physical properties representative of the human liver. Ribs 
generally consist of a cancellous bone core enclosed by a shell of cor
tical bone, the thickness of which varies with gender and age. Ex
amining micro CT scans of ribs, it is apparent that the majority of the 
volume of a rib consists of cancellous bone [48,49]. Thus, the physical 
properties of ribs used in the numerical simulations in this paper cor
respond to those of cancellous bone. The acoustic properties of all tissue 
media are listed in Table 1. The fat layer was assumed to possess an 
ellipsoidal cross section with a thickness of 10 mm close to the axis of 
the transducer. The distance between the surface of the fat layer and the 
ribs vary from 1 mm to 15 mm. 

The surface meshes of domain j are made of triangles with an 
average element size of /4 where = =jmin( , ), 1, 2j0 . This re
sulted in (i) 44924 nodes (89,848 dofs) in the fat domain, and (ii) 
30088 nodes (60,176 dofs) in the ribs domain. 

In the first instance, a simulation was carried out omitting the fat 
layer. The GMRES solver (with the same tolerance and restarts as be
fore) solved the preconditioned equations for the ribs model in 74 
iterations and 2 min. Adding the fat layer to the model increased the 
number of iterations to 82 and the runtime to just under 9 min. Here, 

=R 10 4 m was used to calculate the OSRC preconditioner, Eq. (19). 
The computation of the discrete matrices with the standard -matrix 
compression technique took 80 and 465 min for the ribs only and fat 
and ribs problems, respectively. The simulation results are depicted in  
Figs. 5 and 6. It can be observed that the presence of the fat layer leads 
to a drop in the peak pressure magnitude at the focus. Another inter
esting observation is the formation of a pre-focal high-pressure area 
caused by the constructive interference of the diffracted and trans
mitted waves through the fat layer. The significance of this observation 
and its clinical ramifications will however depend on the size, geometry 
and location of the fat layer with respect to the tumour and other tissue 
heterogeneities. The patient specificity of such features reinforces the 
need for treatment planning using validated numerical models, prior to 
a HIFU intervention, so that the potential impact of pre-focal heating 
may be gauged and subsequently mitigated. Figs. 7a and b show the 
axial and lateral waveforms through the focus (i.e. along the Z and Y 

Fig. 3. The convergence performance of the GMRES solver with tolerance 10 5 at different mesh densities using the single sphere model. The mesh density is defined 
as the number of elements per wavelength. 

Fig. 4. Schematic diagrams of the HIFU array, the idealised abdominal fat layer 
and the ribcage, the intersection of visualisation axes is [−0.08,−0.08,−0.18]. 
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Fig. 5. Calculated absolute value of ptot for the case of two ribs (a) without a fat layer and (b) with a fat layer.  

Fig. 6. Calculated absolute value of ptot at plane =Z 0, for the case of two ribs (a) without a fat layer and (b) with a fat layer. The colour bar limit was set to 4 MPa for 
a better visualisation of the interior fields. Contours specify the boundary of the ribs and the fat layer. 

Fig. 7. The absolute value of ptot along (a) Y axis at = =X Z0, 0, (b) along Z axis at = =X Y0, 0.  
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axes), respectively. The peak pressure at focus is reduced by almost 15%
when accounting for transmission and scattering by ribs. Augmenting 
the model by including the fat layer, the peak pressure at focus de
creases by about 50%. 

The second anatomical example involves another clinically relevant 
scenario using HIFU to ablate a tumour of the kidney. The apex of the 
spherical section array is positioned at [−0.13, 0.13, 0] m and the axis 
of transducer is colinear with the [1, −1, 0] vector, thus resulting in the 
geometric focus of the array being inside the kidney, see Fig. 8. The 
scattering domains are (i) a perinephric fat layer enclosing the kidney, 
and (ii) a human kidney model. These two domains are immersed in an 
infinite exterior domain possessing physical properties of water. The 
physical properties of all domains are shown in Table 1. The thickness 
of the perinephric fat layer is about 10 mm and is placed 1 mm away 
from the kidney (constant gap). 

Similar to the previous examples, the triangular surface meshes 
have an average element size of /4. The fat and kidney domains have 
47,766 and 65,870 nodes (95,532 and 131,740 dofs), respectively. The 
R parameter of the OSRC preconditioner was set to 10 3 m. The pre
conditioned equations were solved in 69 iterations which took about 
35 min. Simulations are shown in Figs. 9a and b. Considering that the 
material contrasts in both domains are small, i.e. =Z Z/ 0.86fat water and 

=Z Z/ 1.10kidney water , the aberration of the HIFU beam is negligible. This 
is better displayed in Fig. 10 which shows the magnitude of the axial 
pressure for different scenarios. The peak pressure at the focus is re
duced by 15% due to the presence of the perinephric fat layer and the 
kidney. Eliminating the perinephric fat layer and keeping the kidney, 
the peak pressure at the focus only reduces by 5%. This problem was 
solved in 45 iterations and 12 min. The computation time to discretise 
and populate the matrix with -matrix compression is about 20 and 
40 h for the kidney only and kidney and perinephric fat models, re
spectively. 

Fig. 8. Schematic diagrams of the HIFU array, perinephric fat layer and the 
kidney, the intersection of visualisation axes is [−0.13,0,0]. 

Fig. 9. Calculated absolute value of ptot for the case of a perinephric fat layer and the kidney: (a) in 3D, (b) at =Z 0 plane.  

Fig. 10. The absolute value of ptot at =Z 0 plane along the axis of propagation, 
i.e. [1,−1,0] vector. The axial distances are determined from the centre of the 
array located at .[−0.13,−0.13,0]. 
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4. Conclusion 

This paper presents an innovative fast multiple-domain BEM for
mulation for solving the Helmholtz transmission problem. The for
mulation uses a variation of the multiple-domain PMCHWT equation 
and a novel OSRC preconditioner. The numerical experiments on a 
single workstation demonstrated the great performance of this new 
formulation for solving the Helmholtz transmission problem at high ka 
values (i.e. high frequencies and/or large – relative to the wavelength – 
computational domains) and where there is high variation in material 
properties. In such scenarios, the HTP becomes ill-conditioned and 
computationally intractable. The numerical methods which use volu
metric meshes face challenges to solve those problems on a work
station, demanding access to computer clusters. Nonetheless, we have 
shown that the new OSRC preconditioner and the multiple-domain BEM 
formulation deliver an efficient solution for modelling linear ultrasound 
propagation in large computational domains consisting of soft and hard 
tissues. 

These advantages of the developed formulation make it stand out 
for HIFU treatment planning applications. Numerical simulations were 
performed using anatomical meshes and a HIFU array transducer de
signed for treating abdominal tumours. The pressure fields were cal
culated for (i) a model of a human ribcage and an idealised abdominal 
fat layer, and (ii) a human kidney and perinephric fat layer, exposed to 
the acoustic field generated by a 256-element HIFU array transducer at 
1 MHz. These simulations provided important insightful observations as 

follows: the presence of tissue heterogeneities and strong scatterers 
such as bone can lead to substantial aberration of the focus, the for
mation of the pre-focal high-pressure area, and reduction in the peak 
pressure. The significance of these effects are patient specific which 
reinforces the need for treatment planning using validated numerical 
models prior to a HIFU intervention. Furthermore, these results pro
mote the application of the new OSRC block diagonal preconditioner 
and the multiple-domain BEM algorithm for fast and accurate patient- 
specific HIFU treatment planning. Nevertheless, the computational 
performance of this solver can be further improved by speeding up the 
calculation of the Calderón operators. This is the subject of our current 
research. We are also incorporating the developed model into a soft
ware package for calculating ultrasound propagation in the body and 
cancer treatment planning. 
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Appendix A. Calderón operator 

Solving the Helmholtz transmission problem with the BEM requires to reformulate the Helmholtz equation in the volume to boundary integral 
equations at the interfaces of two domains. This can be achieved by the aid of representation formulae which determine the acoustic fields from 
surface potentials at the boundaries. The representation formula for the domain j j, ( 0) reads 

SL DL=p p p( ) ( ),j
k
j j j

k
j j j

j j (A.1) 

where p( )j j and p( )j j are the jump potentials, and SLk
j
j and DLk

j
j are the single layer and double layer potential integral operators, respectively, 

and are given by 

SL =p G dx x y y y
x

[ ( )]( ) ( , ) ( ) ( )
for ,

j j
k

j

j j

(A.2)  

DL =p dx y y

x

[ ( )]( ) ( ) ( )

for ,

j j G

j

x y

n y

( , )

( )j
kj

j

(A.3) 

where G x y( , )kj denotes the Green’s function for the Helmholtz equation given by 

=G x y

x y x y

( , )

for , and .
k

e

j
x y4j

ikj x y

(A.4) 

Taking the Cauchy trace, ± ± ±[ ]j
D
j

N
j T, , , , of the representation formula Eq. (A.1) produces 
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p p
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, ,

j

j
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(A.5) 

In order to further simplify this, we need to use the jump relations and their regularity across the boundary. The jump relations read 
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where V K K W, , ,j j j j are the single layer, double layer, adjoint double layer, and hypersingular boundary integral operators defined as follows 

V =p G dx x y y y
x
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for ,

j j
k

j
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Inserting the jump relations into Eq. (A.5) results in 

V K

K W

K Id V

W K Id

+
=

p p p
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2
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2

1
2 (A.11) 

which taking the identity matrix out gives the Calderón operator defined as follows 

A K V
W K

,k
j j j

j jj (A.12) 

thus, Eq. (A.5) becomes 

Id A= +±p
p
p

1
2

( )
( )

.j j
k
j

j j

j j
,

j (A.13) 

For the PMCHWT formulation, the interior jump potentials read 

=p p( ) ,j j
D
j j, (A.14a)  

=p p( ) .j j
N
j j, (A.14b)  

Taking Eqs. (A.13) and (A.14) into consideration, the Calderón representation of the interior Helmholtz problem in domain j reads. 

Id A= +p p1
2

.j j
k
j j j, ,
j (A.15) 

With regards the exterior domain, we define the total scattered field in 0 with ps and the total exterior pressure as = +p p pstot inc. Incorporating 
these definitions, the exterior jump potentials for PMCHWT formulation become = +p p( ) D

0 0
tot and = +p p( ) N

0 0
tot, and =+ +p ps

0, where the 
Cauchy traces + are evaluated at =j

n j
1 . Substituting these equations into Eq. (A.13) yields the Calderón formulation of the exterior Helmholtz 

problem as follows, one should note that the Calderón boundary operator is evaluated with the exterior wavenumber k0, 

Id A=+ +p p1
2

.s k tot0 (A.16)   
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