41 research outputs found

    Glutamate and Synaptic Plasticity Systems and Smoking Behavior: Results from a Genetic Association Study

    Get PDF
    Smoking behavior is a multifactorial phenotype with significant heritability. Identifying the specific loci that influence smoking behavior could provide important etiological insights and facilitate the development of treatments to further reduce smoking related mortality. Although several studies pointed to different candidate genes for smoking, there is still a need for replication especially in samples from different countries. In the present study, we investigated whether 21 positive signals for smoking behavior from these studies are replicated in a sample of 531 blood donors from the Brazilian population. The polymorphisms were chosen based on their representativeness of different candidate biologic systems, strength of previous evidence, location and allele frequencies. By genotyping with the Sequenom MassARRAY iPLEX platform and subsequent statistical analysis using Plink software, we show that two of the SNPs studied, in the SLC1A2 (rs1083658) and ACTN1 (rs2268983) genes, were associated with smoking behavior in our study population. These genes are involved in crucial aspects of nicotine dependence, glutamate system and synaptic plasticity, and as such, are biologically plausible candidates that merit further molecular analyses so as to clarify their potential role in smoking behavior

    NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of microglia causes the production of proinflammatory factors and upregulation of NADPH oxidase (NOX) that form reactive oxygen species (ROS) that lead to neurodegeneration. Previously, we reported that 10 daily doses of ethanol treatment induced innate immune genes in brain. In the present study, we investigate the effects of chronic ethanol on activation of NOX and release of ROS, and their contribution to ethanol neurotoxicity.</p> <p>Methods</p> <p>Male C57BL/6 and NF-κB enhanced GFP mice were treated intragastrically with water or ethanol (5 g/kg, i.g., 25% ethanol w/v) daily for 10 days. The effects of chronic ethanol on cell death markers (activated caspase-3 and Fluoro-Jade B), microglial morphology, NOX, ROS and NF-κB were examined using real-time PCR, immunohistochemistry and hydroethidine histochemistry. Also, Fluoro-Jade B staining and NOX gp91<sup>phox </sup>immunohistochemistry were performed in the orbitofrontal cortex (OFC) of human postmortem alcoholic brain and human moderate drinking control brain.</p> <p>Results</p> <p>Ethanol treatment of C57BL/6 mice showed increased markers of neuronal death: activated caspase-3 and Fluoro-Jade B positive staining with Neu-N (a neuronal marker) labeling in cortex and dentate gyrus. The OFC of human post-mortem alcoholic brain also showed significantly more Fluoro-Jade B positive cells colocalized with Neu-N, a neuronal marker, compared to the OFC of human moderate drinking control brain, suggesting increased neuronal death in the OFC of human alcoholic brain. Iba1 and GFAP immunohistochemistry showed activated morphology of microglia and astrocytes in ethanol-treated mouse brain. Ethanol treatment increased NF-κB transcription and increased NOX gp91<sup>phox </sup>at 24 hr after the last ethanol treatment that remained elevated at 1 week. The OFC of human postmortem alcoholic brain also had significant increases in the number of gp91<sup>phox </sup>+ immunoreactive (IR) cells that are colocalized with neuronal, microglial and astrocyte markers. In mouse brain ethanol increased gp91<sup>phox </sup>expression coincided with increased production of O<sub>2</sub><sup>- </sup>and O<sub>2</sub><sup>- </sup>- derived oxidants. Diphenyleneiodonium (DPI), a NOX inhibitor, reduced markers of neurodegeneration, ROS and microglial activation.</p> <p>Conclusions</p> <p>Ethanol activation of microglia and astrocytes, induction of NOX and production of ROS contribute to chronic ethanol-induced neurotoxicity. NOX-ROS and NF-κB signaling pathways play important roles in chronic ethanol-induced neuroinflammation and neurodegeneration.</p

    Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System

    Get PDF
    Anna Ökvist is with Karolinska Institute, Sofia Johansson is with Karolinska Institute, Alexander Kuzmin is with Karolinska Institute, Igor Bazov is with Karolinska Institute, Roxana Merino-Martinez is with Karolinska Institute, Igor Ponomarev is with UT Austin, R. Dayne Mayfield is with UT Austin, R. Adron Harris is with UT Austin, Donna Sheedy is with University of Sydney, Therese Garrick is with University of Sydney, Clive Harper is with University of Sydney, Yasmin L. Hurd is with Mount Sinai School of Medicine, Lars Terenius is with Karolinska Institute, Tomas J. Ekström is with Karolinska Institute, Georgy Bakalkin is with Karolinska Institute and Uppsala University, Tatjana Yakovleva is with Karolinska Institute and Uppsala University.Background -- Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings -- Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions -- We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.This work was supported by grants from the AFA Forsäkring to AK, YLH, TJE and GB, the Research Foundation of the Swedish Alcohol Retail Monopoly (SRA) and Karolinska Institutet to AK, TJE and GB, and the Swedish Science Research Council and the Swedish National Drug Policy Coordinator to GB. The Australian Brain Donor Programs NSW Tissue Resource Centre was supported by The University of Sydney, National Health and Medical Research Council of Australia, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.Waggoner Center for Alcohol and Addiction Researc

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond

    Chronic smoking and alcoholism change expression of selective genes in the human prefrontal cortex

    No full text
    Background: Alcoholism is commonly associated with chronic smoking. A number of gene expression profiles of regions within the human mesocorticolimbic system have identified potential alcohol-sensitive genes; however, the influence of smoking on these changes was not taken into account. This study addressed the impact of alcohol and smoking on the expression of 4 genes, previously identified as alcoholism-sensitive. in the human prefrontal cortex (PFC). Methods: mRNA expression of apolipoprotein D, tissue inhibitor of the metalloproteinase 3, high-affinity glial glutamate transporter and midkine, was measured in the PFC of alcoholic Subjects and controls with and without smoking comorbidity using real-time polymerase chain reaction. Results: The results show that alcohol affects transcription of some of these genes. Additionally, smoking has a marked influence on gene expression. Conclusion: This study emphasizes the need for careful case selection in future gene expression studies to delineate the adaptive molecular process associated with smoking and alcohol

    Distinct impact of alcoholism, smoking and co-abuse on gene expression in the human nucleus accumbens

    No full text
    Excitatory amino acid transporter-2 (EAAT2) is the major carrier responsible for clearing glutamate from the synaptic cleft in mammalian CNS. A decrease in glutamate transport via reduction of functional EAAT2 protein may contribute to glutamate-mediated excitotoxicity and subsequent neuronal death. Neural cell loss could cause the memory loss symptomatic of Alzheimer’s disease (AD). Exon-skipping variants of EAAT2 have been reported in humans, rats, and dogs. Here we report the results of a quantitative study of three splice variants of EAAT2, EAAT2d7, EAAT2A 9, and EAAT2b. Autopsy tissue from four brain regions; inferior temporal, inferior frontal, posterior motor, and occipital pole of three neuropathologically defined groups; AD (n512), lewy body variant of AD (n510), and cognitively normal individuals (n515) was used. APOE genotype is the major risk factor gene for sporadic AD. A correlation was found between APOE genotype and the amount of splice variant EAAT2 present only in affected regions of AD brain and not in controls or the lewy body variant of AD. This suggests that the relative amounts of EAAT2 splice variants differ between types of dementia and that alternative splicing may be an important mechanism in the pathology of AD
    corecore