749 research outputs found

    Electrical characteristics of amorphous iron-tungsten contacts on silicon

    Get PDF
    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon

    IFT20: An Eclectic Regulator of Cellular Processes beyond Intraflagellar Transport

    Get PDF
    Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells

    When do generalized entropies apply? How phase space volume determines entropy

    Full text link
    We show how the dependence of phase space volume Ω(N)\Omega(N) of a classical system on its size NN uniquely determines its extensive entropy. We give a concise criterion when this entropy is not of Boltzmann-Gibbs type but has to assume a {\em generalized} (non-additive) form. We show that generalized entropies can only exist when the dynamically (statistically) relevant fraction of degrees of freedom in the system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen and is practically statistically inactive. Systems governed by generalized entropies are therefore systems whose phase space volume effectively collapses to a lower-dimensional 'surface'. We explicitly illustrate the situation for binomial processes and argue that generalized entropies could be relevant for self organized critical systems such as sand piles, for spin systems which form meta-structures such as vortices, domains, instantons, etc., and for problems associated with anomalous diffusion.Comment: 5 pages, 2 figure

    Pricing European Options with a Log Student's t-Distribution: a Gosset Formula

    Full text link
    The distribution of the returns for a stock are not well described by a normal probability density function (pdf). Student's t-distributions, which have fat tails, are known to fit the distributions of the returns. We present pricing of European call or put options using a log Student's t-distribution, which we call a Gosset approach in honour of W.S. Gosset, the author behind the nom de plume Student. The approach that we present can be used to price European options using other distributions and yields the Black-Scholes formula for returns described by a normal pdf.Comment: 12 journal pages, 9 figures and 3 tables (Submitted to Physica A

    Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    Get PDF
    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields

    The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis

    Get PDF
    Acknowledgements We wish to thank Jorge GalĂĄn, Gregory Pazour, Derek Toomre, Giuliano Callaini, Joel Rosenbaum, Alessandra Boletta and Francesco Blasi for generously providing reagents and for productive discussions, and Sonia Grassini for technical assistance. The work was carried out with the financial support of Telethon (GGP11021) and AIRC.Peer reviewedPostprin

    Observation and Control of Laser-Enabled Auger Decay

    Full text link
    Single photon laser enabled Auger decay (spLEAD) has been redicted theoretically [Phys. Rev. Lett. 111, 083004 (2013)] and here we report its first experimental observation in neon. Using coherent, bichromatic free-electron laser pulses, we have detected the process and coherently controlled the angular distribution of the emitted electrons by varying the phase difference between the two laser fields. Since spLEAD is highly sensitive to electron correlation, this is a promising method for probing both correlation and ultrafast hole migration in more complex systems.Comment: 5 pages, 3 figure

    Risk, precaution and science: towards a more constructive policy debate. Talking point on the precautionary principle

    Get PDF
    Few issues in contemporary risk policy are as momentous or contentious as the precautionary principle. Since it first emerged in German environmental policy, it has been championed by environmentalists and consumer protection groups, and resisted by the industries they oppose (Raffensperger & Tickner, 1999). Various versions of the principle now proliferate across different national and international jurisdictions and policy areas (Fisher, 2002). From a guiding theme in European Commission (EC) environmental policy, it has become a general principle of EC law (CEC, 2000; Vos & Wendler, 2006). Its influence has extended from the regulation of environmental, technological and health risks to the wider governance of science, innovation and trade (O'Riordan & Cameron, 1994)

    Entanglement purification of unknown quantum states

    Get PDF
    A concern has been expressed that ``the Jaynes principle can produce fake entanglement'' [R. Horodecki et al., Phys. Rev. A {\bf 59}, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from NN copies of a bipartite quantum system about which only partial information is known, for instance in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state ρ(N)\rho^{(N)} of the NN copies of the quantum system is exchangeable, one can write down a simple general expression for ρ(N)\rho^{(N)}. We show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.Comment: 20 pages RevTeX 3.0 + 1 figure (encapsulated Postscript) Submitted to Physical Review
    • 

    corecore