1,888 research outputs found
Carbon capture in the cement industry: technologies, progress, and retrofitting
Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4–5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be “carbon-capture ready” for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money
Spangolite: an s=1/2 maple leaf lattice antiferromagnet?
Spangolite, Cu6Al(SO4)(OH)12Cl.3H2O, is a hydrated layered copper sulphate
mineral. The Cu2+ ions of each layer form a systematically depleted triangular
lattice which approximates a maple leaf lattice. We present details of the
crystal structure, which suggest that in spangolite this lattice actually
comprises two species of edge linked trimers with different exchange
parameters. However, magnetic susceptibility measurements show that despite the
structural trimers, the magnetic properties are dominated by dimerization. The
high temperature magnetic moment is strongly reduced below that expected for
the six s=1/2 in the unit cell.Comment: Accepted for JPCM Frustrated Magnetism special issue, added reference
[5] in replacemen
AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations
This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event
Excisional treatment of cavernous hemangioma of the liver
Fifteen patients had hepatic hemangiomas removed with liver resections that ranged in extent from local excision to right trisegmentectomy. There was no mortality and little morbidity. The propriety and feasibility of extirpative treatment of such liver tumors has been emphasized by this experience
Probing photoinduced spin states in spin-crossover molecules with neutron scattering
We report a neutron scattering investigation of the spin crossover compound \rm [Fe(ptz)6](BF4)2 which undergoes an abrupt thermal spin-transition from high-spin (HS) S=2 to low-spin (LS) S=0 around 135 K. The HS magnetic state can be restored at low temperature under blue/green light irradiation. We have developed a specially designed optical setup for neutron scattering to address the magnetic properties of the light-induced HS state. By using neutron diffraction, we demonstrate that significant HS/LS ratios (of up to 60 \%) can be obtained with this experimental setup on a sample volume considered large (400 mg), while a complete recovery of the LS state is achieved using near infrared light. With inelastic neutron scattering (INS) we have observed, for the first time in a photo-induced phase, magnetic transitions arising from the metastable HS S=2 state split by crystal field and spin-orbit coupling. We interpret the INS data assuming a spin-only model with a zero-field splitting (ZFS) of the S=2 ground state. The obtained parameters are D \approx -1.28 \pm 0.03 meV and |E| \approx 0.08 \pm 0.03 meV. The present results show that in situ magnetic inelastic neutron scattering investigations on a broad range of photomagnetic materials are now possible
Coupled multiferroic domain switching in the canted conical spin spiral system MnGeO
Despite remarkable progress in developing multifunctional materials,
spin-driven ferroelectrics featuring both spontaneous magnetization and
electric polarization are still rare. Among such ferromagnetic ferroelectrics
are conical spin spiral magnets with a simultaneous reversal of magnetization
and electric polarization that is still little understood. Such materials can
feature various multiferroic domains that complicates their study. Here we
study the multiferroic domains in ferromagnetic ferroelectric MnGeO
using neutron diffraction, and show that it features a double-Q conical
magnetic structure that, apart from trivial 180 degree commensurate magnetic
domains, can be described by ferromagnetic and ferroelectric domains only. We
show unconventional magnetoelectric couplings such as the magnetic-field-driven
reversal of ferroelectric polarization with no change of spin-helicity, and
present a phenomenological theory that successfully explains the
magnetoelectric coupling. Our measurements establish MnGeO as a
conceptually simple multiferroic in which the magnetic-field-driven flop of
conical spin spirals leads to the simultaneous reversal of magnetization and
electric polarization.Comment: 25+4 pages, 4+1 figures, 2+2 table
Topological Sector Fluctuations and Curie Law Crossover in Spin Ice
At low temperatures, a spin ice enters a Coulomb phase - a state with
algebraic correlations and topologically constrained spin configurations. In
Ho2Ti2O7, we have observed experimentally that this process is accompanied by a
non-standard temperature evolution of the wave vector dependent magnetic
susceptibility, as measured by neutron scattering. Analytical and numerical
approaches reveal signatures of a crossover between two Curie laws, one
characterizing the high temperature paramagnetic regime, and the other the low
temperature topologically constrained regime, which we call the spin liquid
Curie law. The theory is shown to be in excellent agreement with neutron
scattering experiments. On a more general footing, i) the existence of two
Curie laws appears to be a general property of the emergent gauge field for a
classical spin liquid, and ii) sheds light on the experimental difficulty of
measuring a precise Curie-Weiss temperature in frustrated materials; iii) the
mapping between gauge and spin degrees of freedom means that the susceptibility
at finite wave vector can be used as a local probe of fluctuations among
topological sectors.Comment: 10 pages, 5 figure
Spin Dynamics at Very Low Temperature in Spin Ice DyTiO
We have performed AC susceptibility and DC magnetic relaxation measurements
on the spin ice system DyTiO down to 0.08 K. The relaxation time of
the magnetization has been estimated below 2 K down to 0.08 K. The spin
dynamics of DyTiO is well described by using two relaxation times
( (short time) and (long time)). Both and increase on cooling. Assuming the Arrhenius law in the
temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K,
both and show a clear deviation from the thermal
activated dynamics toward temperature independent relaxation, suggesting a
quantum dynamics.Comment: 4 page
- …
