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Abstract 11 

Several different carbon capture technologies have been proposed for use in the cement industry. This paper 12 

reviews their attributes, the progress that has been made towards their commercialisation and the major 13 

challenges facing their retrofitting to existing cement plants. A Technology Readiness Level (TRL) scale for 14 

carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel 15 

combustion, amine scrubbing and calcium looping are the most developed (TRL 6 = pilot system 16 

demonstrated in relevant environment), followed by direct capture (4 – 5 = component/system validation at 17 

lab-scale in relevant environment) and full oxy-fuel combustion (4 = component/system validation at lab-scale 18 

Amine 
scrubbing 6 6 2025

Calcium 
looping 6 8 2030

Full oxy-
fuel 4 4 2030

Partial 
oxy-fuel 6 6 2030

Direct 
Capture 4-5 7 2025

Technology Readiness Level 
2020 Availability 2015 
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in lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) 19 

seems to be a challenge for the industry, representing a major step up from TRL 6. 20 

The important attributes that a cement plant must have in order to be ‘carbon capture ready’ for each capture 21 

technology selection is evaluated. Common requirements are space around the preheater/precalciner section, 22 

access to CO2 transport infrastructure and a retrofittable preheater tower. Evidence from the electricity 23 

generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of 24 

cement plant renovation and capture plant construction suggests that synchronising these two actions may 25 

save considerable time and money.  26 

Introduction 27 

Unlike most industrial processes, almost two-thirds (64%) of the CO2 emissions emanating from the Portland 28 

cement industry come from process chemistry rather than from fuel combustion1. As shown in Figure 1, 29 

around 880 kg CO2 is generated per tonne of clinker in a typical (1 Mtpa, 3 000 tpd) cement plant2, which 30 

produces CEM I (95% clinker).  31 

 32 

Figure 1: Direct emissions of CO2 from CEM I (95% clinker) cement manufacture (own calculations). CEM I rather than CEM II was 33 

chosen for comparisons in this paper because of its smaller range of composition than CEM II (95 – 100% clinker by weight versus 35 34 

– 94%).  35 
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The cement industry is likely to play a role in reducing greenhouse gas emissions to combat anthropogenic 36 

climate change. Many decarbonisation pathways suggest that direct specific emission levels of around 350 – 37 

410 kg CO2/t cement will be required
1,3

. However, increasing clinker substitution, alternative fuel use and 38 

thermal energy efficiency
1
 can only lead to specific emissions per tonne of cement falling from 730 kg CO2/t 39 

cement in 2009 to about 540 – 590 kg CO2/t cement in 2050. Alternative, lower CO2-intensity cements have 40 

been suggested but uptake is not expected to be anywhere near the levels required if the sector is to meet these 41 

targets4. Many NGO-based analysts, such as the IPCC and IEA, agree that the main technology group able to 42 

achieve the remaining required emission reductions is carbon capture and storage (CCS)1,5, owing to the 43 

relatively high concentration of CO2 in the flue gas from these large, point-source emitters
6
. Estimates suggest 44 

that the Spanish cement industry could reduce its specific direct emissions by only 21% between 2010 and 45 

2050 without CCS7, and that UK cement sector absolute CO2 emissions could be reduced by 66% in the 1990 46 

to 2050 period if CCS is not available but by 81% if it is
8
. 47 

However, none of the 45 large-scale CCS projects in design, construction or operation involves the cement 48 

industry9. Most operating carbon capture plants are in natural gas processing9, but by 2050 seven industrial 49 

sectors could account for about half of CO2 emissions avoided by CCS
10

. Commercial-scale application of the 50 

technology in the cement industry is seen by most as being five to ten years away at best and that few, if any, 51 

carbon capture plants will exist before 203011–17. Little research into the practicalities of installing the capture 52 

plant at a cement plant, particularly in the case of retrofitting, has been published
18–20

. A lack of effective 53 

policy drivers – such as a substantial carbon price, effective strategies to address carbon leakage and 54 

promotion of access to capital – is limiting progress and impeding commercial-scale demonstration
11,19,21

. An 55 

estimate that failure to develop CCS for industrial applications could increase climate policy costs globally by 56 

221 bn €2013/y by 205013 illustrates the importance of the technology to the cement sector and other energy-57 

intensive sectors. 58 

This paper starts by developing a new Technology Readiness Level (TRL) methodology for carbon capture at 59 

cement plants. The paper then describes the five following promising carbon capture processes: amine 60 

scrubbing, calcium looping, full oxy-fuel combustion, partial oxy-fuel combustion and direct capture, before 61 

assessing them according to several criteria including the TRL methodology. Based on current R&D efforts, 62 

the TRL of each capture technology in 2020 and a date for commercial availability is predicted. Finally, some 63 
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of the changes to a cement plant required to enable construction and operation of each carbon capture 64 

technology are identified and compared; the most important issues to take into consideration when designing a 65 

cement plant which is likely to require retrofitting with CCS in the future are highlighted. It should be noted 66 

that this paper focusses on carbon capture technologies, not the complete chain of capture, transport and 67 

storage.  68 

Evaluation of carbon capture technologies for cement plants 69 

Technology Readiness Levels (TRLs) 70 

TRLs are used for determining how close to operational deployment a technology is and this approach has 71 

been extensively used across CCS literature related to electricity generation
22,23

. In Table 1, we modified 72 

electricity generation-specific methodologies from the US Department of Energy Clean Coal Research 73 

Program
23

 and the GCCSI
22

 to be relevant to cement manufacture. The original US DoE TRL specification 74 

included two quantitative measures for many of the levels: the size of the process as a percentage of final size 75 

of the power station, and a volumetric flow rate of flue gas. This concept has been retained. The flue gas and 76 

production rates at each level are equivalent. ‘Commercial-scale’ is assumed to be a minimum of 1 000 tpd 77 

(tonnes of clinker per day), and a demonstration cement plant is assumed to have a capacity at least 250 tpd. 78 

Promising technologies for carbon capture at cement plants 79 

Five promising carbon capture technologies for use at cement plants are described and discussed below. A 80 

summary, including costs, is presented in Table 2. For comparison, global average thermal energy 81 

consumption in 2012 was 3 530 MJ/t clinker, down from 3 750 MJ/t clinker in 20002. Average electrical 82 

consumption was 74 kWhe/t clinker and 99 kWhe/t cement in 20122. Typical investment costs for a cement 83 

plant in Europe are 250 €2013/(tpa)
20

. A 3 000 tpd (1 Mtpa) cement plant produces approximately as much CO2 84 

as a 125 MWe coal-fired power station. 85 

Amine scrubbing 86 

This is an end-of-pipe technology; it only involves the flue gas and so does not directly affect the cement 87 

manufacture process except, for example, energy management strategies and start up and shut down 88 

procedures. Capture rates are expected to be ≥ 90%
24

 but some studies have examined lower rates
18

.   89 
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The thermal energy demand of amine scrubbing is very high (at least 2 GJ/t CO2)
24

 and it generally has to be 90 

provided via CHP and/or waste heat recovery. Owing to the paucity of low-grade heat at most cement plants, 91 

it may be significantly cheaper to capture only a proportion (up to 50%) of the CO2 from the plants and not 92 

invest in extra heat generation capacity
25

. Furthermore, the flue gas clean-up required increases plant footprint 93 

and capital and operating costs26. As with all capture technologies, there are knock-on environmental effects 94 

from using amine scrubbing
27

. 95 

With respect to electricity generation, the technology is at TRL 8 – 9
21

. For cement production, the pilot plant 96 

in Brevik, Norway is the most developed, and with a flue gas flow rate of approximately 125 L/s its TRL is 5 97 

– 6
28

. We are not aware of any plans for larger-scale pilot projects in the short- to medium-term. A preliminary 98 

estimate of commercial availability is 2025 – 2030, significantly later than the IEA’s estimate of 20201. 99 

Full oxy-fuel combustion 100 

Oxy-fuel uses a mixture of oxygen (separated from air) and recycled CO2 as the combustion gas, reducing the 101 

CO2 separation plant’s complexity and size20. The capture rate is expected to be > 90%29. 102 

Although energy efficiency30 and clinker throughput31 are expected to improve in an oxy-fuel cement plant, an 103 

air separation unit (ASU) using up to 60 kWhe/t clinker is required to produce pure oxygen for the process
29

. 104 

Alternative processes for oxygen production are being developed which could reduce the energy penalty24. 105 

Unlike the other four technologies, full oxy-fuel combustion will affect the whole cement plant. The design of 106 

virtually every unit is different from a traditional cement plant to take account of different gas properties and 107 

to minimise gas ingress or egress from the units20. This is likely to be technically achievable but expensive; on 108 

this basis we agree with others
19 

that retrofitting full oxy-fuel capture to an existing cement plant is unlikely to 109 

be an attractive proposition. New-build full oxy-fuel cement plants are expected to cost around 220 – 290 110 

€2013/t annual clinker capacity (€/(tpa))8,32,33. Applying a 50-year lifetime and a 10% discount rate, this capital 111 

cost alone is equivalent to 22.2 – 29.2 €/t cement. Similar numbers calculated for the other technologies are 112 

given in parentheses after their capital costs. 113 

Full oxy-fuel is seen by some20 as the best technology for new-build low-carbon cement manufacture, but 114 

development is difficult because the next stage is the construction of a whole, albeit small, cement plant. Its 115 
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TRL is 4 and until the ECRA’s €50M, 500 tpd pilot plant is funded
34

 this is not expected to increase; however, 116 

such progress could raise full oxy-fuel’s TRL to 8. This step seems to be without the remit of most research 117 

organisations (such as universities) and to the authors’ knowledge no company has announced any intention to 118 

fund such a pilot plant in the near- or medium-term. An estimate of commercial availability is 2030 – 2040. 119 

Partial oxy-fuel combustion 120 

The difficulties with applying full oxy-fuel combustion have led to a ‘partial oxy-fuel’ approach where the 121 

preheaters and precalciner are oxy-fuelled and the kiln and cooler are air-fuelled (i.e. conventional). It is 122 

expected that the capture rate could be as high as 70%20,35. The preheaters and precalciner would have to be 123 

redesigned and made gas-tight, but retrofitting is expected to be easier than for full oxy-fuel because the kiln 124 

and cooler would not change. Since 75% of the fuel is burned in the precalciner it is assumed that a partial 125 

oxy-fuel ASU would require about 45 kWhe/t clinker20. A partial oxy-fuel retrofit is expected to cost around 126 

85 €/(tpa)
32

 (8.6 €/t) whilst new-builds are expected to be in the region of 225 – 275 €/(tpa)
20,35

 (22.7 – 27.7 127 

€/t). 128 

A 30 – 50 tpd pilot plant has been built by a consortium including Air Liquide, FLSmidth and Lafarge, and a 129 

feasibility and cost exercise regarding retrofitting partial oxy-fuel to a cement plant undertaken
36

. Its TRL is 130 

therefore 6, but without the next step of a full FEED study it is unlikely to increase soon37. A preliminary 131 

estimate of commercial availability is 2025 – 2035, similar to the IEA’s estimate of 20251. 132 

Calcium Looping (CaL) 133 

Calcium looping (CaL) involves chemical reactions between CO2 and calcium oxide sorbent in a pair of 134 

circulating fluidised beds. There are energetic and waste benefits that can be achieved by integrating CaL with 135 

cement manufacture from using CaCO3 as a sorbent precursor and operating at > 600°C
38

. High-grade ‘waste 136 

heat’ from the process can be used to generate additional electricity; this should be about the same as the 137 

amount required by the cement, capture and CO2 compression plants combined. 138 

An ASU using about 20 kWhe/t clinker would be required to produce oxygen for the calciner. Fuel 139 

consumption would increase by about 50% but the CO2 avoidance rate is expected to be ≥ 90%35. The 140 

preheaters would need altering to take into account the diversion of limestone from the usual raw meal entry 141 

point at the first preheater to the CaL calciner; Ozcan et al.39 assume that the waste CaO sorbent would be 142 
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mixed with the rest of the raw meal between the precalciner and kiln (the ‘diversion’ design). The flue gases 143 

would flow into the CaL carbonator between the third and second preheaters. Alternatively, the CaL calciner 144 

could replace the precalciner (the ‘replacement’ design)
35

. Another rather different design (‘HECLOT’, by 145 

ITRI) uses a rotary kiln calciner; this could encounter the same issues surrounding gas-tightness as full oxy-146 

fuel combustion40,41. 147 

The largest project so far is HECLOT in Taiwan, which captures 1 tCO2/h from 3.1 t/h flue gas using the 148 

rotary kiln calciner
40

. Thus, CaL in the cement industry is at TRL 6. ITRI is planning to build a larger plant in 149 

2017 which, if successful, will raise the TRL to 840. There are no known plans to build a cement-based CaL 150 

pilot plant with a fluidised bed calciner. A preliminary estimate of commercial availability is 2025 – 2030. 151 

Direct Capture 152 

Direct capture only captures emissions coming from the calcination of limestone, which account for about 153 

64% of the CO2 generated at a typical cement plant
1
. This process is being developed by Calix, an Australian 154 

company. Most of the information in this section comes from the company directly, via the website and from 155 

discussions with employees42. 156 

Direct capture occurs in a vertical shell-and-tube heat exchanger known as a direct capture unit (DCU). Raw 157 

meal and steam pass down the tubes and are heated and calcined by heat transferred from flue gases from a 158 

combustion process flowing through the shell. Because no external gases enter the tubes, the gas coming out 159 

of them is a virtually pure CO2/steam mix. After steam knock-out, the CO2 should be suitable for 160 

compression42. 161 

The DCU will replace the precalciner and receive hot raw meal from the preheaters. Modelling by Calix 162 

suggests that the energy penalty after heat integration will be ± 2% of the thermal energy requirement of the 163 

cement plant43. Retrofitting should be relatively easy because it requires the replacement of only the 164 

preheaters and precalciner. 165 

A pilot plant has operated with an equivalent capacity of 160 tpd clinker. The lack of information about the 166 

impurities in the raw meal limits its TRL to 4. Calix is planning to build a 320 tpd pilot plant at a European 167 

Page 7 of 31

ACS Paragon Plus Environment

Environmental Science & Technology



cement plant before 2020 and successful operation will raise the TRL to 7. A preliminary estimate of 168 

commercial availability is 2025 – 2030. 169 

Prospects for further development and technology champions 170 

If there were great pressure to commercialise cement CCS as soon as possible, amine scrubbing would likely 171 

be the first available, but the lack of such pressure offers other technologies the chance to catch up. Amine 172 

scrubbing’s main problem is its cost (see Table 2); a cheaper alternative at a similar level of development 173 

would stand a good chance of supplanting it. However, no technology is likely to be widely available before 174 

2025. 175 

Direct Capture and Calcium Looping seem to be progressing fastest and possibly could reach TRL 7 by 2020; 176 

no other technology is expected to reach this level soon although partial oxy-fuel combustion could overtake 177 

them if the AL/Lafarge/FLS consortium decides to progress with trials. 178 

Scale-up can require significant investment; the six-tenths ‘rule’45 suggests that increasing the scale of a 179 

process by an order of magnitude will quadruple capital investment costs. Building the confidence of potential 180 

investors or developers is critical for carbon capture projects because most of the technologies are developed 181 

by a sequence of organisations on the path to commercialisation. 182 

In this context, TRL 7 seems to be the major obstacle for capture processes in the cement industry. This may 183 

be because it is the point at which traditional university-led research is too small-scale to develop the 184 

technology further. Companies or larger research institutions acting as a ‘champion’ for a specific technology 185 

are generally more suited to carry on development beyond TRL 6. Such organisations are Calix (direct 186 

capture) and ITRI (calcium looping). The ECRA, as a research collaboration of several cement manufacturers, 187 

does not necessarily have the independence and resources to develop a pilot-scale oxy-fuel plant. Although the 188 

AL/Lafarge/FLS consortium (partial oxy-fuel) would appear to have massive financial and technological 189 

resources, it is likely that limited funds and scope prevent it from continuing development. Amine scrubbing 190 

has many champions but whether much of their focus is on the cement industry is debatable. The absence of 191 

commercial reasons to invest in a decade-long development & demonstration programme makes TRL 7 192 

virtually impossible for technologies currently championed by universities and small research institutes. 193 
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Of particular interest to plant owners may be technologies that can be installed, if not operated, at a low extra 194 

cost. Designing a process to be easily convertible to partial oxy-fuel (e.g. more air-tight preheaters) may help 195 

to reduce costs in the long-run; this is discussed below. Furthermore, direct capture theoretically offers 50 – 196 

60% capture for very little added cost for new-builds. It is possible that such a plant could be built and run 197 

competitively until the rest of the CCS chain is available. 198 

Technologies such as amine scrubbing, which are already in use in other industries, have the benefit of 199 

learning within those industries as well as design and equipment suppliers with relevant experience. Oxy-fuel 200 

systems should not suffer too much in this respect; oxygen production is similar across industries and although 201 

changes to all major process units are required, these should be well within the competencies of cement plant 202 

manufacturers. Direct capture and CaL are quite process-specific so are unlikely to benefit in this respect. 203 

Early indications are that retrofitting a cement plant with some form of carbon capture (except amine 204 

scrubbing) will have a capital cost in the region of 100 €/(tpa) (10.1 €/t) compared with a reference new-build 205 

cement plant cost of approximately 250 €/(tpa)46 (25.2 €/t). A new-build cement plant with carbon capture is 206 

expected to cost in the region of 300 €/(tpa) (30.3 €/t). Costs of CO2 avoided are around 20 – 80 €/t CO2, again 207 

excepting amine scrubbing. It is more difficult to gain a clear picture here because of the different discount 208 

rates used across the literature which range from 6% to 16% but tend to cluster around the 8 – 10% 209 

region23,24,35,47. 210 

The range of capital costs for amine scrubbing varies wildly, and this is in part due to assumptions about the 211 

source of the extra energy for stripping the CO2 from the solvent18,32. Most studies focus on MEA 212 

solvent
18,20,30,48

; it is more likely that more advanced amines would be used, reducing both the capital and 213 

operating costs. 214 

Any capture process must allow the cement plant to continue to produce in-spec cement. Amine scrubbing 215 

should not have a significant effect beyond affecting the energy management on site unless waste heat 216 

recovery is installed on the kiln. Cycling calcium oxide (or all the raw meal) through a calcium looping 217 

system will affect the physical properties of the solids, something which could have an effect on cement 218 

quality and is currently being studied batch-wise in laboratories. Direct capture’s DCU could also have an 219 

effect on the properties of the calcined raw meal, and the pilot plant planned for construction by 2017 should 220 
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produce relevant data to evaluate possible effects. In-spec cement was created during full oxy-fuel laboratory 221 

studies. It can be expected that by 2020 the quality of cement made in a plant with any of these capture 222 

process attached will have been tested and hopefully confirmed to be within relevant standards such as EN 223 

197
49

. 224 

Retrofitting cement plants with carbon capture technology 225 

At some point it may be necessary to attach carbon capture facilities to an existing cement plant, a process 226 

known as retrofitting. The IEA assumes that the retrofitting of existing point-source emitters with carbon 227 

capture is likely to be necessary from 2020 in order to reach emission targets
3
. Retrofitting is generally seen to 228 

be more difficult and expensive than applying CCS to new-builds because there may be issues surrounding 229 

access, plant footprint and management of fuels and other resources. The plant must also be shut down for the 230 

installation of the new equipment. Only a few sources in the literature have discussed these issues
32

. A 231 

contribution to this topic is provided below. 232 

Shutdown time 233 

Fixed costs represent approximately 40% of total costs of operation50 so closing down a plant for an extended 234 

period leads to significant financial repercussions. Any overruns in construction and commissioning would 235 

add yet more costs, with fixed costs alone being in the order of €3M per month for a typical 1 Mtpa clinker 236 

plant51. 237 

The first significant retrofit of a power station with CCS was of Boundary Dam Unit 3 with amine scrubbing, 238 

which started operation in October 2014. Putting aside the testing and commissioning time, the construction 239 

took thirteen months although it should be noted that the power station unit was refurbished at the same 240 

time52. 241 

Cement plants undergo various shutdowns for repairs, maintenance and improvement. These range from short 242 

annual shutdowns of around a month to longer shutdowns performed maybe once in a generation; 243 

modernisation of complete plants can take more than a year. This can be compared with the construction of a 244 

new cement plant, which takes around 18 – 24 months. (These durations come from promotional material, so 245 

cannot be assumed to be representative of the industry as a whole53.)  246 
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Thus, the time periods for refurbishment of cement plants and installation of carbon capture at power stations 247 

are similar. This suggests that applying carbon capture during a cement plant refurbishment may be the most 248 

convenient strategy, in a manner similar to Boundary Dam Unit 3. Changes to virtually all process units will 249 

mean the shutdown period for full oxy-fuel combustion is likely to be long. By contrast, connecting a pre-250 

constructed amine scrubbing plant to the preheater exhaust may be possible within the period of an annual 251 

shutdown (about a month). The other technologies will likely fall somewhere in between. 252 

Carbon Capture Readiness (CCR) 253 

The length (and cost) of shutdown periods for installation of the different technologies may ultimately become 254 

a major determinant of which of them, if any, are competitive. A way to reduce this time and expense could be 255 

by designing the cement plant to be ‘carbon capture ready’ from the outset. Although CCS is not currently 256 

viable in the cement sector, plant owners may wish to ensure that they can install it with minimal disturbance 257 

once it is. Alterations to the original design of the site and the cement plant itself to make them CCR could 258 

reduce time and cost during retrofitting for a small up-front investment. 259 

Published work on CCR in the cement sector has focussed on amine scrubbing. Liang & Li18 provide a list of 260 

21 criteria split into six categories for assessing the potential to retrofit cement plants with amine scrubbing: 261 

extra space on site, access to storage capacity, water supply, sufficient electricity & steam, cement production 262 

technology and flue gas properties. The IEA GHG
30

 states that the four main requirements for amine 263 

scrubbing retrofitting are land, electricity import, steam production and removal of certain gases from the flue 264 

gas. The first is simple to understand – the new units require space – but this may not be so easy in practice, as 265 

cement plants are often surrounded by land which is unsuitable or that belongs to another entity. Electricity 266 

can either be imported from the grid or produced on site, but again this will require space and/or money. 267 

Amine scrubbing requires low concentrations of NO2, SO2 and O2 in the flue gas so a pre-treatment stage will 268 

be necessary; this is not an insurmountable challenge.  269 

To better understand the requirements of each technology for CCR, the changes to each relevant unit in the 270 

cement manufacturing process are compared in Table 3. Some site-wide considerations, and those concerning 271 

new units, have also been identified. The preheaters usually need to be replaced because they will have to 272 

handle a gas mix with different properties (full oxy-fuel) and/or a different mass flow rate (CaL, direct capture 273 
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& partial oxy-fuel). Oxy-fuel systems also require more air-tight units. Attaching amine scrubbing could 274 

change the operating conditions of the preheaters because a large enough pressure gradient will be required to 275 

ensure the gases flow from the preheaters to the capture plant. Preheaters at a ‘diversion’ design CaL plant 276 

will require tie-in locations where the gases can be diverted to the capture plant and back again. 277 

The precalciner will require changes in all cases except amine scrubbing and ‘diversion’ calcium looping; in a 278 

‘replacement’ design it will be replaced by the CaL calciner. In direct capture the precalciner will be replaced 279 

with the direct capture unit (DCU) which will require a larger area and a new raw meal conveyance system 280 

between the preheaters and DCU may be required. In oxy-fuel combustion, the design of the precalciner will 281 

need to change slightly to take into account the altered gas and flame properties but it should be possible to fit 282 

it in roughly the same area as an air-fuel precalciner. 283 

The kiln and coolers will only require alterations in full oxy-fuel, and in this case full replacement is likely to 284 

be the most practical option, with new, air-tight designs being installed. A two-stage cooler will be required, 285 

in which the first stage uses recycled CO2 and the second stage air to cool the clinker20. 286 

Since none of the carbon capture technologies is yet available, cement plant owners may not wish to invest in 287 

CCR based on one technology. However, there are several common requirements across all or most of the 288 

technologies. By identifying these and considering whether they merit investment up front, the plant owner 289 

can reduce retrofitting costs without locking himself in to one technology. Some major considerations for each 290 

technology are shown in Table 3 and the ones in common are discussed below. 291 

Critical issues for CCR 292 

The availability of land for expansion is already a concern at many sites and may be the factor which prevents 293 

or delays roll-out of CCS at some of them. Plant layout is related to this issue; all capture technologies require 294 

space at specific locations around the cement plant so ensuring that existing units do not have to be moved a 295 

few metres to make room for others could greatly reduce shut-down time. Setting aside space solely to 296 

facilitate easier construction and access on-site during retrofitting could also reduce shut-down costs. In all 297 

cases, a CO2 compression and temporary storage facility will require space. In general, relatively large zones 298 

should be reserved for the capture plant close to the preheater tower and precalciner/kiln connection. 299 
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Cement plants tend to be located on limestone deposits; although some researchers have suggested that plants 300 

are built within the region of a CCS cluster19, it is unlikely that this will happen except where the cluster is 301 

located upon a suitable geological formation. Limestone is not suitable for CO2 storage so there is likely to be 302 

a need for significant and reliable CO2 transport between plant and storage site. Purchasing, or having an 303 

option to purchase, the storage capacity is also extremely important32. Discussions with local authorities on 304 

planning applications for capture plants and CO2 pipelines at the time of cement plant construction could 305 

increase the chance that the plant and pipeline can be built when required. These issues are not unique to the 306 

cement sector and so are not discussed in more detail here. 307 

Other important issues for CCR 308 

Some items may be relatively cheap to construct when building the original cement plant, but difficult or 309 

expensive to alter later on. For example, if some or all of the major pipe-runs for the capture plant are installed 310 

at the same time as those for the cement plant itself, fewer changes are likely to be required later and perhaps a 311 

shorter shut-down will be possible.  Several of the technologies would benefit from the preheater tower being 312 

adaptable to house the new preheaters and/or precalciner. However, care should be taken in choosing to apply 313 

CCR without assessment of the benefits. For example, Bohm et al
54

 determined that CCR costing 4% of the 314 

total cost of the plant made little difference to the economics of IGCC power stations. Lucquiaud et al. suggest 315 

that making a pulverised coal power station CCR could cost less than 1% of capital costs55, and Liang et al. 316 

determine that such power stations in China are up to 10% less likely to close early
56

. Rohlfs & Madlener 317 

calculated that it was usually more cost-effective to close a modern, unabated power station and replace it with 318 

a completely new abated power station
57

. Discounted cash-flow analysis can identify whether the extra capital 319 

expenditure for particular items is financially attractive or more extensive rebuilding or replacement at a later 320 

date is more suitable. This is not applicable for some particular items such as land – if the plant does not have 321 

room to build the capture facilities on existing land or expand into adjacent areas, the capture plant may never 322 

be built regardless of the profitability. 323 

In conclusion, carbon capture in the cement is several years away but timely consideration of the challenges 324 

which lie ahead, such as retrofitting and ensuring cement plant/capture plant compatibility, will reduce their 325 

complexity in the long run. The lack of large-scale (> 50 tpd) pilot plants in the cement industry is currently 326 

the biggest impediment to further capture technology development and commercialisation. 327 
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Table 1: Technology Readiness Levels for CCS in the cement industry 332 

TRL Definition Description 

 

1 Basic principles observed and reported Lowest level of technology readiness. Scientific research begins to be translated into applied R&D. Examples include 

desktop studies of a technology’s basic properties. 

2 Technology concept and/or application 

formulated 

Invention begins. Once basic principles are observed, practical applications can be invented. Applications are speculative 

and there may be no proof or detailed analysis to support the assumptions. Examples are still limited to analytic studies. 

3 Analytical and experimental critical 

function and/or characteristic proof of 

concept 

Active R&D is initiated. This includes analytical and laboratory-scale studies to physically validate the analytical 

predictions of separate elements of the technology (e.g., individual technology components have undergone laboratory-

scale testing using bottled gases to simulate major flue gas species at a scale of < 0.5 L/s, and simulated raw materials). 

4 Component and/or system validation in 

a laboratory environment 

A bench-scale prototype has been developed and validated in the laboratory environment. Prototype is defined as < 1 tpd 

(e.g., complete technology process has undergone bench-scale testing using synthetic flue gas composition at a scale of < 

20 L/s, and simulated raw materials). 

5 Laboratory-scale similar-system 

validation in a relevant environment 

The basic technological components are integrated so that the system configuration is similar to (matches) the final 

application in almost all respects. Prototype is defined as < 1 tpd clinker scale (e.g., complete technology has undergone 

testing using actual flue gas composition at a scale of < 20 L/s and actual raw materials). 

6 Engineering/pilot-scale prototypical 

system demonstrated in a relevant 

environment 

Engineering-scale models or prototypes are tested in a relevant environment. Pilot or process-development-unit scale is 

defined as 1 – 50 tpd (e.g., complete technology has undergone small pilot-scale testing using actual flue gas 

composition at a scale equivalent to 0.04 – 1 Nm3/s and actual raw materials). 

Page 15 of 31

ACS Paragon Plus Environment

Environmental Science & Technology



7 System prototype demonstrated in a 

plant environment 

This represents a major step up from TRL 6, requiring demonstration of an actual system prototype in a relevant 

environment. Final design is virtually complete. Pilot or process-development-unit demonstration of a 50 – 250 tpd 

clinker scale (e.g., complete technology has undergone large pilot-scale testing using actual flue gas composition at a 

scale equivalent to approximately 1 – 4.5 Nm
3
/s and actual raw materials). 

8 Actual system completed and qualified 

through test and demonstration in a 

plant environment 

The technology has been proven to work in its final form and under expected conditions. In almost all cases, this TRL 

represents the end of true system development. Examples include start-up, testing, and evaluation of the system within a 

≥ 250 tpd plant with CCS operation (e.g., complete and fully integrated technology has been initiated at full-scale 

demonstration including start-up, testing, and evaluation of the system using actual flue gas composition at a scale 

equivalent to ≥ 4.5 Nm
3

 and actual raw materials). 

9 Actual system operated over the full 

range of expected conditions 

The technology is in its final form and operated under the full range of operating conditions. The scale of this technology 

is expected to be ≥ 1000 tpd plant with CCS operations (e.g., complete and fully integrated technology has undergone 

full-scale demonstration testing using actual flue gas composition at a scale equivalent to ≥ 18 Nm3
 and actual raw 

materials). 

Table 2: CO2 capture from the cement industry: technology comparisons 333 

Attribute Amine scrubbing* Calcium looping Full oxy-fuel Partial oxy-fuel Direct capture 

Capital cost (€2013) 213 M for 2 Mtpa RF 

(China)18 

440 – 540 for 1 Mtpa NB32 

245 – 350 for 1 Mtpa RF32 

269 M NB (inc cement plant 

cost) for 1 Mtpa35 

125 M NB (capture plant 

only) for 1 Mtpa35 

291 M for 1 Mtpa NB32 

104 M for 1 Mtpa RF32 

97 – 107 M for 1 Mtpa RF35 

85 M for 1 Mtpa RF32 

275 M for 1 Mtpa NB32 

 

Unknown. 
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Overall cost, avoided 

(€2013/t CO2) 

46 – 57 NB @ DR 6 – 16 %18 

51 NB @ DR 7 %48  

107 NB @ DR 10 %58 

52 – 104 @ DR 8 %32 

143 – 187 RF @ DR 10 %15  

172 – 333 (short-term)  

86 (long-term)47 

53 RF18 

 

75 – 85 RF @ DR 10 %15 

18 NB35 

31 NB59 

 

39 NB @ DR 8 %32 

41 RF @ DR 8 %32 

49 NB @ DR 8 %32 

54 RF @ DR 8 %32 

12 NB35 

54 – 69 RF37 

58 RF32 

62 RF36 

Unknown 

Typical capture rate > 90 % > 90 % > 90 % 65 % 60 % 

 

Complexity Low: mature end-of-pipe 

technology, but extensive FG 

clean-up is required before 

capture 

Medium: integration should 

be simple but fluidised bed 

combustor operation is outside 

cement industry knowledge 

High: Increased design 

and maintenance 

complexity; operation of 

the plant changes, 

especially in kiln and 

cooler. Kiln stop likely if 

O2 supply fails. 

 

Medium: Increased design and 

maintenance complexity 

(although less than full oxy-

fuel); operation of the plant 

should be relatively similar to 

unabated cement 

Low: Operational knowledge of 

direct capture in cement industry 

currently non-existent except for 

one company but kiln/cooler 

section identical to before. 

Major changes to 

cement process 

None Precalciner replaced with dual 

fluidised beds (or, for 

New preheaters and 

precalciner necessary. 

New preheaters and precalciner 

necessary. 

Precalciner replaced with direct 

capture unit (DCU) tower. 
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HECLOT, one fluidised bed 

and a rotary kiln), steam cycle 

and associated equipment 

Changes to kiln burner 

and cooler designs 

necessary. False air flow 

reduction requires altered 

designs of units 

 

Capture plant 

footprint 

Large because of installation 

of SCR & FGD systems as 

well as capture plant26 

Possibly slightly larger than 

partial oxy-fuel but smaller 

than full oxy-fuel. CO2 

processing unit required to 

remove chlorides & water. A 

steam cycle will need to be 

installed. 

Relatively large - air 

separation, waste heat 

recovery and CO2 

processing units will take 

up space.  

Medium (0.5 ha) – air 

separation, waste heat recovery, 

FG recycling and CO2 

processing units will take up 

space, but lower capture rate 

and O2 demand means they will 

be smaller than full oxy-fuel 

Small. DCU tower likely to be 

shorter but wider than a preheater 

tower; gas treatment plant will be 

small due to low capture rate and 

inherent purity of CO2 (only 

water removal necessary) 

 

Cement quality No change expected No change observed at lab 

scale 

No change observed at lab 

scale 

 

No change observed at lab scale Unknown 

Retrofittability Easy, since few changes to the 

cement plant itself are 

required. Physical connection 

to cement plant probably 

possible in annual shutdown 

‘Diversion’ and 

‘Replacement’ designs: 

Possible, but prolonged 

shutdown likely while dual 

FBCs installed. Space may be 

Technically possible but 

doubts about practicality 

remain. Long shutdown 

expected for installation 

of new equipment and 

Relatively easy. Precalciner and 

preheater replacement will 

require a lengthy shutdown, but 

length (and risks) not as great as 

for full oxy-fuel. 

Relatively easy. Probably similar 

to partial oxy-fuel as both require 

preheater & precalciner 

replacement. Modular nature of 

capture technology should enable 
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period. Space for capture plant 

may be an issue on many sites. 

 

a constraint. 

‘HECLOT’: replacement of 

kiln will cause a long 

shutdown. As with full oxy-

fuel, practicality of gas-tight 

rotary kilns must be 

demonstrated 

alteration of existing units some prefabrication and reduce 

construction times on site 

Current Technology 

Readiness Level 

(TRL) with respect to 

cement manufacture 

6 

0.125 Nm3/s real FG 

scrubbed28 (ca. 0.2% of full 

size) 

6 

3.1 tph FG (0.7 Nm3/s FG) 

HECLOT PP in operation in 

Taiwan59 but results not yet 

published (1.2% of full size) 

4 

Lab-scale tests 

undertaken, but no PP 

built yet20 

6 

2 – 3 tph RM (1.3 – 2 tph) pilot 

plant in Denmark operated 

successfully37 

4-5 

One-tube (10 tph RM, 6.6 tph/160 

tpd) tests undertaken, but not at a 

cement plant with only with high-

purity RM. Heat integration not 

tested43. 

 

TRL expected in 

2020 assuming 

successful completion 

of current plans 

6 

No new amine scrubbing PP 

projects in cement sector are 

currently known 

8 

ITRI plans to build a 30 MWt 

(11 Nm3/s, 20% of full size) 

HECLOT PP in 201759 

4 

ECRA plans to build a 2 

tph PP seem to be on hold 

so unlikely to be 

completed by 2020 

6 

Consortium not progressing 

with FEED because of lack of 

viable business model37 

7 

20 tph RM (ca. 13 tph/320 tpd 

clinker, 10 % of full size) PP to 

be built in 2018 – 2020. 

Time until wide 

availability 

10 – 15 years 10 – 15 years 15 – 25 years 10 – 20 years 10 – 15 years 
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 334 

RF = retrofit. Includes only cost of capture plant. NB = New-build. Includes cost of cement plant (usually about 150 M€ in Europe). DR = discount rate. RM = raw meal. FG 335 

= flue gas. PP = pilot plant. Full size = 3 000 tpd clinker (1 Mtpa), or 55 Nm
3
/s flue gas. *Includes the cost of CHP for heat provision. 336 

  337 
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 338 

Table 3: Technology-specific considerations for designing capture-ready cement plants 339 

Aspect of 

plant 

Amine scrubbing Calcium looping Direct capture Oxy-fuel 

Partial Full 

Raw materials 

& fuel 

handling; 

utility 

connections 

If a CHP plant is to be built, 

the fuel supply should be 

considered. This may include 

a natural gas pipeline 

connection. 

More fuel (ca. 50%) will be required on 

site so storage & handling facilities could 

be designed to accommodate this from 

the start. Combustion of alternative fuels 

in a CFB may be difficult so coal 

facilities may be the most important to 

over-size. 

If necessary, a source 

of purer (i.e. low-Cl) 

raw materials should 

be identified 

A larger electricity grid connection should be 

installed so that enough electricity can be imported to 

run the ASU and other capture equipment 

Cooling and process water connections will be necessary 

Preheaters The ability to connect the flue gas exhaust to the gas clean-up system should be included. 

The exhaust from the 

preheaters will go to the 

FGD plant. Enough pressure 

will have to be present to let 

it flow; this may affect plant 

The tower should be built to a specification whereby it can accommodate the new design of preheaters required in the 

capture plant. 

Tie-in locations for connection to the 

CaL calciner should be designed and 

included (‘diversion’ design) 

The preheaters 

should be at a height 

to allow good 
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design or require the 

installation of an extra fan 

connection between 

them, the DC 

calciner and the kiln. 

Precalciner No action necessary. The connections between the calciner and 

the kiln and preheaters should be 

appropriate for re-connection to the CaL 

calciner (‘replacement’ and ‘HECLOT’ 

designs) 

Sufficient space for 

the larger direct 

capture calciner is 

necessary.  

The calciner housing design must be able to 

accommodate the post-retrofit calciner. 

Kiln No action necessary. The kiln should be as airtight as 

possible. The region around the 

burner, including the air supply 

should be suitable for 

retrofitting with the new burner 

and gas supply. The kiln must 

be compatible with the 

refractory required for oxy-fuel 

combustion 

Cooler No action necessary. 

 

The cooler, or at least the site of 

the cooler, should be adaptable 
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for oxy-fuel operation. This 

may include building a two-

stage cooler, which is likely to 

be larger than a standard cooler. 

Plant footprint A very large amount of land 

will be required to build the 

capture facilities. This 

should be close to the 

preheater exhaust. The CHP 

plant should be built close by 

to reduce the distance that 

the steam has to be 

transported 

The cement plant may require a different 

layout to ensure that a CaL system can be 

fitted between the preheaters and kiln or 

within the preheater train. Space for the 

ASU and steam cycle should be provided 

relatively close to the CaL plant location, 

and gas clean-up and compression should 

not be too far away from the calciner. 

A small amount of 

land will be required 

to accommodate the 

DCU and flash 

condenser. 

A significant amount of land will be required for an 

ASU and the recirculation loop. Land for the gas 

clean-up plant should be made available close to the 

preheater tower.  

Other Gypsum will be produced 

on-site from the FGD plant; 

disposal or sale of this 

should be considered 

  Purification & 

compression plant 

for partial oxy-fuel 

plant (1 Mtpa) 

would require 0.5 

ha. 
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Figure 1: Direct emissions of CO2 from CEM I (95% clinker) cement manufacture (own calculations). CEM I 
rather than CEM II was chosen for comparisons in this paper because of its smaller range of composition 

than CEM II (95 – 100% clinker by weight versus 35 – 94%).  
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