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1Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, CNRS,
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At low temperatures, a spin ice enters a Coulomb phase—a state with algebraic correlations and

topologically constrained spin configurations. We show how analytical and numerical approaches for

model spin-ice systems reveal a crossover between twoCurie laws.One of these laws characterizes the high-

temperature paramagnetic regime, while the other, which we call the ‘‘spin-liquid Curie law,’’ characterizes

the low-temperature Coulomb-phase regime, which provides implicit evidence that the topological sector

fluctuates.We compare our theory with experiment forHo2Ti2O7, where this process leads to a nonstandard

temperature evolution of the bulk susceptibility and the wave-vector-dependent magnetic susceptibility, as

measured by neutron scattering. Theory and experiment agree for bulk quantities and at large scattering

wave vectors, but differences at small wave vectors indicate that the classical spin-ice states are not equally

populated at low temperatures. More generally, the crossover appears to be a generic property of the

emergent gauge field for a classical spin liquid, and it sheds light on the experimental difficulty ofmeasuring

a precise Curie-Weiss temperature in frustrated materials. The susceptibility at finite wave vectors is shown

to be a local probe of fluctuations among topological sectors on varying length scales.

DOI: 10.1103/PhysRevX.3.011014 Subject Areas: Magnetism, Statistical Physics, Strongly Correlated Materials

I. INTRODUCTION

There are indications [1–10] that condensedmatter phys-
ics is leaving the drought in which experimental candidates
for quantum spin-liquid states are scarce. Main contenders
for future spin-liquid materials are quantum versions
of the well-known ‘‘spin ices,’’ where quantum fluctuations
[11–14] of the classically degenerate spin-ice state could
lead to a collective paramagnetic phase with such exotic
features as emergent gauge symmetry or charge or spin
fractionalization [15,16]. Theoretical investigations have
had great success in characterizing quantum spin liquids
through emergent topological properties [17]. In the case of
gapped spin liquids, the presence of topological invariants
naturally leads to the concept of ‘‘topological order’’—a
quantity connected to the topological degeneracy of the
emergent gauge theory. Such topological invariants are,
however, generally hidden from conventional probes and

typically require measurement of nonlocal quantities, such

as the entanglement entropy [18,19], which are not obvi-

ously accessible to experiment. In the case of gapless spin

liquids, entanglement entropy cannot be so easily used to

classify the emergent topology. This is particularly unfor-

tunate for the quantum spin ices, which, due to the nature of

the underlying classical gauge structure, most likely fall

into this category [3]. For this reason, it is imperative to

search for other probes that can be used to characterize the

topological structure of spin-ice states—probes that are

preferably amenable to experimental measurement.
Topological invariants have already been used exten-

sively in the past to characterize the rich behavior of clas-
sical, geometrically frustrated magnets and dimer systems,
arising from the constraints inherent in these many-body
systems. The most familiar topological invariant is the
‘‘winding number sector,’’ which can be used to define Z2

or integer topological sectors in a variety of 2D and 3D
systems. Interestingly, other novel topological sectors have
recently been identified [20] that are unique to three dimen-
sions and which may be related to exotic quasiparticle
excitations in some spin-liquid phases arising from local
constraints [21]. In this paper, we address the question
of how these topological structures could be related to
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measurable correlations in real materials. The correlations
induced by local constraints were discussed in systems on
the kagome lattice with both discrete [22] and continuous
symmetry [23] and for frustrated antiferromagnets with a
pyrochlore structure [24–26]. In these theoretical models,
the physics of the ‘‘Coulomb phase,’’ with dipolar correla-
tions showing up as pinch-point singularities in reciprocal
space [27–29], is universally present. Among systems
showing Coulomb-phase physics [30], spin-ice models
[31] have again proven particularly fruitful testing grounds
for the collective behavior associated with topological con-
straints, as the associated real materials are the only experi-
mental magnetic systems for which sharp pinch points have
been observed [28,29,32,33]. An extensive manifold of
low-energy states can be constructed by ensuring that the
local constraint—the ice rule—is obeyed on every tetrahe-
dron of the underlying pyrochlore lattice. The ice rule
requires that, at low temperatures, two spins point into
and two spins point out of every tetrahedron, as shown in
Fig. 1. This local divergence-free condition is sufficient to

generate the long-range dipolar correlations of theCoulomb
phase, even within the confines of the simplest model with
nearest-neighbor spin interactions. Fitting the correlated
spin configurations into a space with particular boundary
conditions leads to the identification of a topological invari-
ant, the winding number, which is directly related to the
magnetization (see Sec. II). Hence, although the topological
invariants are global measures of the system, they are
intimately related to correlations at the microscopic level.
It is therefore reasonable to suppose that, by probing the
correlations, one can extract information about the invari-
ants themselves. This is the subject of the present paper.
We show that, while spin ice is topologically constrained,

it is not topologically ordered, as it is able to fluctuate
between topological sectors. We hence show how the sus-
ceptibility can be used as an indicator of these topological-
sector fluctuations (TSF) and present a detailed comparison
of our results with both bulk-magnetometry and neutron-
scattering measurements on Ho2Ti2O7 [34]. We compare
the experimental data to analytical and numerical expres-
sions of the susceptibility, where the emergence of TSF at
low temperatures appears as a crossover between two Curie
laws at specific wave vectorsQ in the structure factor SðQÞ.
This study was motivated, in part, by the experimental ob-
servation of an unusual temperature dependence in thewave-
vector-dependent susceptibility, close to the Brillouin-zone
boundary [35] (see Fig. 6), which is explained by the theory
presented in this paper. Approaching the zone center, the
experimental data remain consistent with topological-sector
fluctuations over all length scales, although there is some
discrepancy between theory and experiment, which we
discuss.
The rest of the paper is organized as follows: In Sec. II,

we present a detailed theoretical discussion of topological-
sector fluctuations in spin-ice models and materials. In
Sec. III, we present a calculation of the susceptibility and
pseudospin susceptibility within the Husimi-cactus ap-
proximation for spin ice, which can be seen as an
infinite-dimension version of the pyrochlore lattice. In
Sec. IV, we compare theory and experimental data for
bulk-magnetometry measurements, both in the context of
topological-sector fluctuations and in the extraction of an
effective Curie-Weiss temperature. In Sec. V, we compare
the numerical simulation of neutron-scattering intensities
for nearest-neighbor spin ice with the theory from the
Husimi-cactus calculation. Section VI compares theory
and neutron-scattering data. In Sec. VII, we broaden the
field, showing how our results apply generally to frustrated
ferromagnets and antiferromagnets on pyrochlore and re-
lated lattices, and we conclude in Sec. VIII.

II. TOPOLOGICAL SECTORS IN SPIN ICE

Let us first characterize a model system, of size L,
with periodic boundaries and, only afterwards, relate its
properties to experimental observables. We study the
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FIG. 1. (a) A portion of the pyrochlore lattice, made of corner-
sharing tetrahedra. All spins respect the ice rules (two in, two
out). The red spins form a string propagating along the �ẑ axis,
while the green hexagon represents a nonwinding loop of six
spins. (b) The Husimi-cactus construction for the pyrochlore
lattice. (c) Mapping between spins with easy-axis anisotropy
respecting the symmetry constraints of the lattice (right), and the
corresponding pseudospins (left). (d) Scattering function SðQ; TÞ
of the NNSI model at T ¼ 1 K for a system of 4000 spins,
simulating Ho2Ti2O7 with Jeff ¼ 1:8 K. The pinch points are
evident at [0,0,2], [1,1,1], and [2,2,2].
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nearest-neighbor spin-ice model (NNSI) [31] with vector

spins of unit length, ~Si, placed on the vertices of a pyro-
chlore lattice. The lattice is constrained to lie along the
body- centered crystal-field directions of the tetrahedra:
~Si ¼ � ~di (see Fig. 1). The NNSI also has ferromagnetic-
exchange interaction J > 0. The model maps onto
Anderson’s Ising antiferromagnet [36] with exchange con-
stant J0 ¼ �J=3 [37] through the definition of Ising

pseudospin variables �i ¼ ~Si � ~di. However, it is the ferro-
magnetic spin-ice model that is physically realizable: The
Ising pyrochlore antiferromagnet with a single easy axis
cannot represent any real magnetic system, as its
Hamiltonian breaks the cubic lattice symmetry [31]. The
ensemble of ground states satisfying the ice rules of two
spins in and two out, or

P
i¼1;4�i ¼ 0, on each tetrahedron

is a Coulomb phase [24,25] and leads to the Pauling zero-
point entropy [38,39] (see Fig. 1). In this paper, we con-
sider cubic systems with L3 unit cells and N ¼ 16L3 spins.
Throughout the paper, as we have in mind comparisons
with Ho2Ti2O7, we take J ¼ 1:8 K, the value found to best
parametrize thermodynamic measurements of this spin-ice
material with nearest-neighbor coupling [34]. The strong
uniaxial crystal fields [40] make the magnetic degrees of
freedom Ising-like up to the 100 K energy scale, as dis-
cussed in more detail in Sec. IVB.

A microstate of the Coulomb phase can be classified by
a set of strings of alternating out, in, out . . . spins that wind
through the system along each of the cubic axes. In other

words, any spin ~Si with a downward (upward) projection
along a given cubic axis always has at least one nearest
neighbor above and below it with the same downward
(upward) projection (see Fig. 1). Connecting these spins
draws a map of strings spanning the system from top to
bottom in the negative (positive) direction. We define an
individual string, which does not necessarily close on
itself, as an object spanning the system once along one
cubic axis, so each string is composed of 4L spins. Hence,
each microstate has n�k (nþk ) strings spanning in the nega-

tive (positive) direction along cubic axis k̂, such that the
total number, n0 ¼ n�k þ nþk ¼ 4L2, equals the number of

spins on a plane of the pyrochlore lattice perpendicular to

k̂. Each spin belongs to three strings threading along x̂, ŷ,
and ẑ. Two strings threading through a tetrahedron in the

same direction k̂ are indistinguishable and can, in fact, be
mapped onto the world lines of bosons living in the
(d� 1)-dimensional space perpendicular to the string
direction [41–43]. One can define a topological sector
for each configuration through a winding vector ~w ¼
ðwk ¼ nþk � n�k Þk¼x;y;z, whose components are even inte-

gers taking values between�4L2. ~w therefore constitutes a
topological invariant with Uð1Þ symmetry.

Spin fluctuations within the Coulomb phase are nonlocal
and limited to the flipping of a closed loop of spins iden-
tified in two categories (see Fig. 2). First, a nonwinding

loop of spins closes within the system. This kind of spin
moves the system between microstates of a given topologi-
cal sector, rearranging the string network without changing
the winding number. Second, a winding loop closes on
itself after passing one or more times through the periodic
boundaries. Each passage flips a string of spins and
changes the topological sector through a change in one
component of the winding vector by 2. We define a topo-
logically ordered system as one that is restricted to a single
topological sector.
In model systems, the Coulomb phase space can be

sampled directly in simulations by using a nonlocal
worm algorithm [44,45]. The worm is a virtual sequence
of spins that burrows through the system until it closes on
itself, becoming a loop move that maintains the ice rules.
Using the worm algorithm, one can test for topological
order, or topological-sector fluctuations, without invoking
ergodicity arguments. While transitions to topologically
ordered states do exist [28,41–43,47–49], no such transi-
tion occurs in the NNSI in the zero field, and we find that
sector fluctuations are maintained in the Coulomb phase.
Of course, in reality there are no worm dynamics.

Rather, magnetic monopoles, which are deconfined topo-
logical defects [50,51], provide local dynamics [52], and
their creation and annihilation allow for the sampling of
different constrained states. Sector fluctuations occur as
topological defects are created, wind through the periodic
boundaries, and are destroyed. A system-spanning loop
update of the worm algorithm is therefore nothing more
than a fast forward of such a trajectory for a single pair of
topological defects. The same topological defects that
provide the dynamics decouple the topological-sector in-
formation from the magnetization for length scales above
their mean separation. This decoupling happens because

FIG. 2. Nonwinding loop (blue arrows) and string (red arrows)
that can be flipped by winding loops of this length. The winding-
loop move leads to a topological-sector fluctuation. The string
(long red arrows) illustrates the effective finite-size system
sampled by neutrons, with wave-vector transfer of amplitude
jqj ¼ 2�=�.
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the magnetization of a lattice plane that cuts a line between
the pair of defects is different from one that does not.
Hence, strictly speaking, such fluctuations can never be
seen in the thermodynamic limit. Pragmatically, there is, of
course, a limit for the defect concentration, below which
the magnetic fluctuations faithfully represent those of the
topological sector. We are able to reach this temperature in
simulation and approach it in experiment, allowing us to
extract information about fluctuations of the topological
sector from the temperature range where the concentration
of topological defects is finite.

Topological order may also be defined heuristically in
classical spin liquids as a lack of ergodicity between con-
figurations with different topological invariants (see, e.g.,
Ref. [53]). In this paper, following the discussion above,
we show that, in the NNSI with periodic boundaries and in
Ho2Ti2O7, this heuristic definition of topological order is
not required, as on decreasing the temperature the fate of
the topological sector fluctuations is decided before ergo-
dicity is lost.

The winding vector ~w is a direct measure of the differ-
ence between upward and downward projections along
each cubic axis, making it proportional to the magnetic

moment: ~M ¼ ð4L= ffiffiffi
3

p Þ ~w. Magnetic fluctuations of a sys-
tem in the Coulomb phase are therefore a direct measure of
topological-sector fluctuations: Nonwinding loop fluctua-
tions carry no magnetic moment, while winding ones carry
a magnetic fingerprint of the change in topological sector.
Each sector is associated with an extensive subset of states
with constant magnetization connected by nonwinding
loop moves, while magnetic fluctuations correspond to a
change in topological sector. Susceptibility measurements
could therefore be used as a diagnostic of both the cross-
over from the high-temperature paramagnetic phase into
the constrained phase and the extent of topological-sector
fluctuations at low temperatures.

III. SPIN ICE ON A HUSIMI CACTUS

We calculate both the magnetic susceptibility and the
pseudospin susceptibility for Ising spins exactly on a
Husimi cactus of corner-sharing tetrahedra. This approach
preserves the coordinations of the pyrochlore lattice but
neglects nonwinding loops (see Fig. 1). Although this
approach gives an approximation of the pyrochlore lattice,
previous work [41] suggests that it should provide an
excellent basis for describing magnetic fluctuations, as it
allows system-spanning strings of flipped spins and hence
winding-number fluctuations. The approach is reminiscent
of the cluster-variation method developed in Ref. [54].
Spins on the ðnþ 1Þth shell (green in Fig. 1(b)) have three
equivalent neighbors and one neighbor on the nth shell
(blue in Fig. 1(b)). The total partition function is built up
recursively by summing over the degrees of freedom of the
spins from the ðnþ 1Þth shell while holding the spin on
the nth shell fixed, with an external field h along the

z axis breaking the up-down symmetry [55,56]. In order
to neglect boundary effects, thermodynamic quantities,
such as the longitudinal susceptibility �, are extracted
from the center of the cactus:

� �
�
@mz

@h

�
h!0

¼ 2�

3

1þ e2�J

2þ e2�J þ e�6�J
; (1)

where mz ¼ hPiS
z
i =Ni, and h� � �i is a thermal average.

Here and throughout the paper, our susceptibility has di-
mensions of inverse temperature. To compare with
experiment, the susceptibility must be multiplied by 3C,
where C is the normal Curie constant in the SI units
system: C ¼ �0�

2NHo=3V � 4 K for Ho2Ti2O7, where
�0 is the vacuum permeability, � is the magnetic moment
operator for Ho3þ, NHo is the number of Ho ions, and V is
the system volume.
The asymptotic limits of �ðTÞ [44,51] reveal a crossover

between collective paramagnetic regimes that are uncon-
strained and constrained, with the Curie constant scaled by
a factor of 2:

�ðT ! 1Þ � 1=3T; �ðT ! 0Þ � 2=3T: (2)

The factor of 1=3 at high temperatures is a necessary
property of a system with cubic space symmetry, familiar
in the case of a Heisenberg paramagnet where an applied
field couples to fluctuations in only one of the three
Cartesian components of the magnetization. We refer to
the low-temperature behavior as the ‘‘spin-liquid Curie
law.’’ Although spin ice has local easy-axis anisotropy, it
is isotropic in linear response, like a Heisenberg ferromag-
net, as can be seen within the Husimi-cactus calculation.
This symmetry is a key property of spin ice and is related to
the almost-perfect screening of the long-range interactions
in the Coulomb phase of the dipolar spin-ice model
[57,58]. Further insight into this low-temperature cross-
over can be gained from the pseudospin susceptibility
(cf. Fig. 1)

�0 �
�
@m0

@h0

�
h¼0

¼ 4�
1þ e�6�J

4þ 6e2�J � 2e�6�J
; (3)

wherem0 ¼
P

i�i=N and where h0 is parallel to the global
pseudospin axis and thus conjugate to m0. The asymptotic
limits of �0 are

�0ðT ! 1Þ � 1=T; �0ðT ! 0þÞ � 2e�2�J

3T
(4)

without the factor of 1=3, as all pseudospins are parallel to
the field. As the constraints are imposed, the pseudospin
moment vanishes on each tetrahedron, and �0 falls to zero
on the same temperature scale as the crossover of � be-
tween the two Curie laws for the system with real spins
(cf. Fig. 3), reinforcing our claim that this crossover can be
used as a signal of the system entering the Coulomb phase
and as an indicator of topological-sector fluctuations at low
temperatures.
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This result can be attained from fluctuations as well as
response, which exposes the origin of the crossover in
terms of correlations. The susceptibility can be written as

3�T ¼ 1þX
i�0

hSi � S0i; (5)

where the summation is over the shells of the Husimi
cactus. Within the Coulomb phase, the total correlation
between ith nearest neighbors is hSi � S0i ¼ 2=3i [55,56],
and � ¼ 2=3T is recovered upon the summation over all
shells. We find that most (98%) of the crossover is ac-
counted for by the first three shells, i.e., within a sphere of
radius r & a. This calculation shows explicitly how inte-
gration over all space leads to a masking of the long-range
part of the correlations generated by the topological con-
straints. Hence, we obtain enhanced paramagnetic fluctua-
tions, rather than the critical scattering one might have
expected. However, the change of scale as one passes
from high to low temperatures is confirmed in simulations
with the full connectivity of the pyrochlore lattice (see
Sec. V), where the algebraic dipolar correlations are re-
covered. The factor of 2 between the two regimes appears
to be related to the dimensionless stiffness of the Coulomb
phase flux field [26].

Comparison with Monte Carlo simulations gives excel-
lent agreement between analytics and numerics, as shown
in Fig. 3, where we show both T� and T�0 from simula-
tions of the NNSI using the worm algorithm. The data
agree with the analytic prediction, within numerical error,
over the entire range of temperature from 100 K to around
0.7 K, at which point the system enters the asymptotic
regime characterized by Eqs. (2) and (4). A closer look
at T� as T ! 0, taken from Ref. [44], gives an estimate of
T� ¼ 0:66735� 0:0003, very close (but not equal) to the
2=3 predicted by the Husimi cactus. The first correction to

the Husimi-cactus calculation is a loop fluctuation around a
six-spin hexagon. These fluctuations appear at the level of
the third shell, whose contribution to the susceptibility
is already very small, and are consistent with the Husimi
calculation’s being an excellent approximation for mag-
netic fluctuations of the NNSI model.

IV. BULK SUSCEPTIBILITY FOR Ho2Ti2O7

A. Comparison with the Husimi cactus

We now move from the model to real materials, which
have no periodic boundaries, so no winding of loops, but
any finite window has strings running through it as in the
periodic system. Although boundary effects may change
the string statistics [22], the same picture of strings and
closed internal loops should hold, motivating a detailed
comparison between model systems and experiment.
Among the frustrated pyrochlore magnets, Ho2Ti2O7 is
generally considered one of the best candidates for a
spin-ice material. In Fig. 4, we superimpose experimental
data from susceptibility measurements for a single crystal
ofHo2Ti2O7 taken between 3 and 15 K, with data corrected
to take demagnetizing fields into account. The experimen-
tal moment is scaled to 96% of its full value of � ¼ 10�B

to get the best fit. Even when taking into account this scale
factor (which is close to unity), the agreement between
experiment, theory, and simulation is remarkably good,
indicating that the bulk susceptibility does indeed approach
the TSF regime as the temperature becomes of order J.
Measurements from a powder sample are compatible with
this conclusion [59].

B. Consequences for the Curie-Weiss law

Unfrustrated ferromagnetic or antiferromagnetic order
begins at a temperature scale set by the Curie-Weiss
temperature, j�CWj, estimated from a high-temperature
expansion for the magnetic susceptibility:
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FIG. 3. Analytical and numerical calculations of the spin and
pseudospin susceptibilities showing the temperature dependence
of 3�T for spins, from Eq. (1), and 3�0T for pseudospins, from
Eq. (3). All data are for Jeff ¼ 1:8 K. The susceptibility of the
NNSI model obtained by MC simulation is also compared with
the analytical theory.
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ð3�TÞ�1 / 1� ��CW: (6)

Expanding Eq. (1) to order Oð�Þ, one finds �CW ¼ 2J for
the NNSI. A standard picture of frustrated compounds
proposed by Ramirez [60] is that frustration hinders order-
ing down to a lower temperature, T� � �CW, with T

� ! 0
for a classical or quantum spin liquid. This is the case for
spin ice, although the susceptibility approaches a spin-
liquid Curie law, characteristic of topological-sector fluc-
tuations, rather than falling to zero at low T, as in an
antiferromagnetic spin liquid with gapped magnetic exci-
tations. The crossover between the two Curie laws occurs
over a very wide range of temperatures so that, while the
TSF regime is reached at around 1 K, the paramagnetic
Curie law is reached only above 100 K. This requirement
to reach rather high temperatures to access the true Curie-
Weiss law is important for comparison with experiment:
100 K is outside the temperature range over which
Ho2Ti2O7 is well approximated by spin-ice models, as
the rare-earth single ion Ho3þ starts to lose its Ising nature,
becoming more Heisenberg-like at high temperatures
[40,61]. Although this scale is well above that set by J, it
is still in the crossover regime. Setting J ¼ 1:8 K, the
canonical value Ho2Ti2O7 gives �CW ¼ 3:6 K, which is
noticeably larger than the estimate from the bulk-
magnetometry measurements for Ho2Ti2O7 that are shown
in Fig. 5 [34]. In Fig. 5, we plot the data for 1=� for the
bulk susceptibility against temperature, together with the-
ory and simulation. The data, now scaled by an effective
moment that is 96% of the full moment, compare ex-
tremely well with a Curie-Weiss law with �CW � 1:9 K,
but lie far from the true Curie-Weiss law with �CW ¼
2J ¼ 3:6 K. In the crossover region, the measured estimate
of the Curie-Weiss temperature thus depends on the
temperature window used for the fit, leading to an uncer-
tainty in �CW. However, as the frustration parameter is an

order-of-magnitude concept, this conclusion has only a
minor impact on its utilization.

V. SIMULATIONS OF THE SCATTERING
FUNCTION SðQ; TÞ

The scattering function SðQ; TÞ measured from diffuse
unpolarized neutron-scattering intensity in the static ap-
proximation is defined as

SðQ; TÞ ¼ jfðQÞj2
���������

XN
i¼1

Si?eiQ�ri
��������

2
�
; (7)

where Si? is the component of a spin at ri orthogonal to the
scattering vectorQðqx; qy; qzÞ, and where h. . .i represents a
thermal average at temperature T. fðQÞ is the magnetic
form factor for Ho3þ ions, which we are able to take as
unity throughout the paper. SðQ; TÞ has previously been
evaluated within a mean-field approximation to the dipolar
spin-ice model [62]. In this section, we test the generic
physics of the Curie-law crossover in the near-neighbor
approximation. In the following section, which deals with
simulation, the form factor is set to unity, while, when
comparing with experimental data, we divide jfðQÞj2 out
of the problem by scaling the scattering intensity to our
theoretical prediction at a fixed high temperature. (See
Secs. V and VI). SðQ; TÞ is the Fourier transform of the
thermally averaged two-spin correlation function, so it is
related to the wave-vector-dependent susceptibility.
In the paramagnetic phase, Eq. (7) becomes

SðQ; T ! 1Þ ¼
�XN
i¼1

ðS2ix0 þ S2i;y0 Þ
�
¼ 2N

3
; (8)

where x0 and y0 are the axes of the plane orthogonal to Q.
As a spin ice is cooled into the Coulomb phase, SðQ; TÞ
develops a strong Q dependence with, in particular, the
appearance of the pinch points [25,27,63] that are charac-
teristic of the local divergence-free constraint imposed by
the ice rules. Figure 1 shows a map of SðQ; TÞ generated
from Eq. (7), in the ½h; h; ‘	 plane of reciprocal space, for
the NNSI as the Coulomb phase is approached. The wave
vectors are in units of 2�=a, where a is the side of a 16-site
cubic unit cell. The pinch points, narrow regions of intense
diffuse scattering, can be seen at the reciprocal lattice
vectors [0,0,2], [1,1,1], and [2,2,2], i.e., at Brillouin-zone
centers for the face-centered cubic lattice of the pyrochlore
structure. Near the [0,0,2] pinch point, the scattering is
expected to take the form

SðQ; TÞ ¼ CðTÞ ~q2z þ ��2
ice ðTÞ

~q2z þ ~q2x þ ~q2y þ ��2
ice ðTÞ

; (9)

where ~qx ¼ qx, ~qy ¼ qy, and ~qz ¼ qz � 2
 ð2�=aÞ and
where, following Youngblood and Axe [63], �iceðTÞ is
a characteristic length for the Coulomb phase [25,29].
The amplitude CðTÞ, which is the value of SðQÞ at the

 0

 0.4

 0.8

 1.2

 0  5  10  15

1/
χ C

G
S

T [K]

FIG. 5. 1=� vs T for bulk-magnetometry measurements of a
single crystal of Ho2Ti2O7 (green triangles), Monte Carlo simu-
lation of the nearest-neighbor spin ice (red dots), and the
analytical result from the Husimi cactus, Eq. (1) (solid blue
line). The dashed lines show Curie-Weiss laws for �CW � 2J ¼
3:6 K (thin line) and �CW ¼ 1:9 K (thick line). The suscepti-
bility is expressed in CGS units cm3 mol�1.
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singular point ~qx ¼ ~qy ¼ ~qz ¼ 0, comes from transverse

magnetic fluctuations: They are described by spin fluctua-
tions in the plane perpendicular to the wave vector ~qz that
describes them. SðQ; TÞ is therefore coupled to two spin
components and so should constitute two contributions
from the bulk susceptibility �. This expression predicts a
ridge of intense diffuse scattering of constant amplitude
along the cubic axis (~qx ¼ ~qy ¼ 0), whose width is limited

by ��2
ice at the pinch point: By continuity, asQ goes to zero,

SðQ ¼ ½0; 0; ‘	; TÞ ¼ CðTÞ ¼ 2NT�, which scales as
4N=3 as T goes to zero, while at higher temperatures, as
�iceðTÞ becomes microscopic, the pinch point broadens and
one crosses back to isotropic homogeneous paramagnetic
scattering, with SðQ; TÞ independent of Q and scaling at
around 2N=3. As a summary, we expect

SðQ; TÞ ¼ 2NT�ðTÞ
�8 Q T ! 1
8 T ~~q ¼ ~0:

(10)

In Fig. 6(a), we show simulation results for the NNSI for
3SðQ; TÞ=2N as a function of temperature for different
values of Q. For Q along ½0; 0; ‘	, the simulation results
confirm the above scenario to a high degree of accuracy, as
results at the Brillouin-zone boundary [0,0,1] and center
[0,0,2] follow the theoretical expression given by the cac-
tus calculation within numerical precision between T ¼
0:7 K and T ¼ 1000 K. This agreement should also be true

for scattering at any pinch point, as confirmed for the point
at [1,1,1]. The data here, extending down to 0.02 K, have
been generated using the loop algorithm, while those for
[0,0,1] and [0,0,2] come from local, single spin-flip dy-
namics. For the latter, the system freezes in the 0.6–0.7-K
regime, as expected, as the density of magnetic monopoles
falls to zero. However, the crossover to the regime of
topological-sector fluctuations is completed before ergo-
dicity is lost. Away from the line of high symmetry ½0; 0; ‘	
and from pinch points, the scattering intensity fails to
develop as the constraints are imposed but remains larger
than the high-temperature asymptote. As seen from the
data at [1,1,0] and [2,2,0], the topological-sector informa-
tion is not contained in these projections, or at least not in a
straightforward way.

A. Scattering along the ridge

The pinch-point function [Eq. (9)] is arranged to give
scattering of constant amplitude along ½0; 0; ‘	 [63]. It is
perhaps surprising, however, to find that, for the numerical
scattering from the NNSI, this long-wavelength expression
holds all the way from the zone center (pinch point) to the
zone boundary. The ~q ¼ ð~qx; ~qy; ~qzÞ independence is a

consequence of the collective paramagnetism yielding dif-
fuse, rather than either Bragg or critical, scattering.
At finite ~q, away from the zone center along the cubic
axis ½0; 0; ‘	, one observes topological-sector fluctuations
in an effective system with reduced size of approximately
2�=j~qj. This effective system has only small finite-size
corrections to the thermodynamic limit.
Specifically, for q along ẑ, we are interested in fluctua-

tions in Mx / wx and My / wy. The strings of alternating

‘‘out-in-out-in . . .’’ spins along a given cubic axis behave
as random walkers in the perpendicular plane [64,65].
Thus, those strings oriented along the ŷ axis have a ballistic
trajectory in this direction but make a diffusive random
walk in the ðx̂; ẑÞ plane. String correlations are therefore
lost when the extension of the string in the ẑ direction
exceeds � ¼ 2�=jqj. If the number of steps along the ŷ

axis is ~‘y, the diffusive orthogonal extension in the ðx̂; ẑÞ
plane is approximately

ffiffiffiffiffi
~‘y

q
. For a string oriented along the

ŷ axis, each tetrahedron provides two possible paths, alter-
natively, along the [1,0,1] and ½1; 0; �1	 axes. Hence, such
strings make an almost isotropic random-walk step in the
ðx̂; ẑÞ plane after spanning two tetrahedra. As there are four
tetrahedra in a cubic cell, a step length is a=2. Fixing the

perpendicular extension as ða=2Þ
ffiffiffiffiffi
~‘y

q
¼ � gives ~‘y �

ð2�=aÞ2, a number that is always greater than unity, even

at the zone boundary, where � ¼ a and ~‘y spans two cubic

cells. Hence, even at the zone boundary, we are observing
strings for a system of large enough effective size to be
essentially in the asymptotic regime where one can observe
topological-sector fluctuations. Although this argument
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relates to a window of finite size embedded in a larger
system, rather than to one with periodic boundaries [22],
the soft effective boundaries provided by a finite-scattering
wave vector appear to give similar results, allowing a
constant scattering amplitude along the entire ½0; 0; ‘	
ridge.

In pictorial terms (see Fig. 2), a neutron with momentum
transfer 2�=� will not detect closed loops on that scale, as
such loops do not change the two-point correlation func-
tion gðr ¼ �Þ, or the magnetic moment calculated over an
area incorporating the loop. However, such a neutron will
be sensitive to fluctuations on a larger scale (r > �), which
appear as fluctuations of strings as a result of the aniso-
tropic scaling of the string trajectory. Hence, the strings
should give essentially uniform scattering right up to the
zone boundary.

For a detailed theoretical discussion of the pinch point
physics, see the recent paper by Sen et al. [66].

VI. NEUTRON SCATTERING EXPERIMENTS
ON Ho2Ti2O7

We now compare our theoretical and numerical findings
with experimental measurements of SðQÞ. In Fig. 6(b),
we show SðQÞ for several Q values in the ½h; h; ‘	 plane
from single-crystal neutron-scattering experiments of
Ho2Ti2O7. (See the Appendix for details.) For each data
set, the intensity is scaled to the value of the susceptibility
estimated from the Husimi cactus at a single temperature
between 30 and 100 K. There are no fitting parameters for
the temperature axis. One can immediately see that the
total intensity at or near the zone boundaries [0,0,0.9] and
[0,0,3] is in remarkably good agreement with theory and
simulation and shows the clear signature of a crossover
between paramagnetic fluctuations and topological-sector
fluctuations. The departure from the theory at high tem-
peratures is most likely due to increasing thermal popula-
tion of higher crystal-field levels leading to a loss of elastic
spectral weight, an effect that cannot be captured by the
ideal Ising spins of the theory.

However, the situation is very different at the pinch point
[0,0,2]. After an initial increase above the Curie law below
30 K, the value of the scattering intensity stagnates and
even decreases as the temperature dips below 3 K. Even
though experiment does not follow the NNSI, the pinch
points become sharply developed at low temperatures,
indicating that the topological constraints are imposed to
an excellent approximation [29]. We also show the evolu-
tion of the scattering intensity at points along the ½h; h; 0	
axis. The data for h ¼ 3=2 are similar to the numerical
scattering data from the NNSI when scaled to the theoreti-
cal susceptibility at high temperatures. As the temperature
is reduced, the intensity increases slightly before approach-
ing a plateau, well below the theoretical predictions for
scattering along the cubic axis [0,0,1]. This result is to be
expected, as the spin components perpendicular to this

low-symmetry direction fail to capture the correlations of
the Coulomb phase.
The differences in behavior at the zone center and at the

zone boundaries shows that in Ho2Ti2O7, unlike in the
NNSI model, not all Pauling states have the same weight.
This observation suggests that states with closed loops of
flippable spins on many length scales, which are charac-
terized by strong pinch-point scattering, have a lower
weight than states characterized by short loops only, which
have enhanced scattering intensity at the zone boundaries.
Such a variation is consistent with the phenomenology of
Youngblood and Axe [63], whose free-energy functional
allows for the variation in scattering amplitude along the
½0; 0; ‘	 ridge. The variation is apparent in both Ref. [29],
where polarized neutron scattering was required to expose
the pinch points, and Ref. [67], where unpolarized scatter-
ing in the related spin-ice material Dy2Ti2O7 tends toward
a pattern characteristic of closed six-spin loops, leaving
pinch points of much-reduced amplitude. The long-range
nature of the dipolar interactions could be at the origin of
the varying amplitude. In the dipolar spin-ice model, the
degeneracy of the Pauling states is weakly lifted, although
the ensuing phase transition [68] is not observed experi-
mentally. Further neighbor-exchange coupling has also
been evoked to explain states dominated by six-spin loops
[67]. More exotically, it has also recently been shown
[13,14,69,70] that quantum fluctuations can favor states
with only short loops and that the inclusion of quantum
fluctuations over short loops in a nearest-neighbor spin-ice
model can produce simulated neutron-scattering patterns
that look remarkably similar to those for Ho2Ti2O7 [29].
The intensity variation along the ½0; 0; ‘	 ridge is further

investigated in Fig. 7, where we replot data from Ref. [29].
In part (a), we show data at a sequence of points on ½0; 0; ‘	
as a function of temperature. In each case, the scattering
intensity is scaled to the predicted susceptibility at 20 K. A
continuous evolution away from the theoretical curve is
visible between [0,0,3] (the zone boundary) and [0,0,2]
(the zone center). In part (b), we show the evolution of
scattering intensity at T ¼ 1:7 K for all Q points along the
ridge and compare this evolution with the theoretical ex-
pectation at this temperature. The points are folded into a
single Brillouin zone. The falloff in scattering intensity
along the ridge is approximately linear, with perhaps a hint
of curvature toward a constant value above ‘ ¼ 0:8. The
linear evolution of intensities between the values we have
developed for a paramagnetic and those for a spin-liquid
Curie law would indicate that there is, in fact, no character-
istic scale above which SðQÞ, and hence the magnetic
susceptibility, returns to the paramagnetic regime. A ten-
tative conclusion, compatible with the observation of pinch
points, is therefore that topological-sector fluctuations are
maintained, although with reduced amplitude, up to a
macroscopic length scale. A word of caution, however:
1.7 K is above the temperature at which the susceptibility
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reaches the asymptotic value characteristic of TSF in the
NNSI. For the model system, and presumably for other
systems with short-range interactions, we are able to ex-
trapolate to this regime and make clear statements con-
cerning the topological sectors. A full investigation of
whether this argument is true in the dipolar spin-ice model
would require extensive numerical simulation, which is
beyond the scope of the present work.

As, strictly speaking, the excitation of monopoles de-
stroys the Coulomb phase, one might consider the ½0; 0; ‘	
ridge intensity to be modulated by a characteristic scale
related to the monopole separation. At 1.7 K, this length

scale is now estimated to be �m � 15 �A [71], giving a
characteristic wave vector of 2�=�m � 0:68, in rough
agreement with the ‘ ¼ 0:8 estimated above. However,
we do not believe the ½0; 0; ‘	 ridge to be modulated in
this way, as the monopole separation, which controls
the pinch-point width, evolves more rapidly with tempera-
ture than does the ridge modulation (consistent with the

phenomenology of Youngblood and Axe [63] when trans-
lated to magnetism). More measurements are needed to
examine this point in detail, but it is worth noting here that
the absence of any monopole-related length scale for ridge
modulation is consistent with the observed robustness
of SðQÞ to a small but finite concentration of monopoles.
In the inset of Fig. 7(b), we show the jQj dependence
of the scattering at 20 K compared to the (scaled) magnetic
form factor of Ho3þ (pink line). The 20-K scattering
was used as the scale factor for the comparison between
theory and experiment at lower temperatures, which
therefore removed the form-factor dependence from the
experimental data.
Loss of ergodicity could also be responsible for the

observed differences between experiment and theory, but
we do not believe that to be the case. In all instances, as
we have already discussed for numerical simulation, the
fate of the comparison between experiment and theory is
determined at a temperature above the characteristic
T � 0:6 K, where a splitting occurs between field-cooled
and zero-field-cooled susceptibilities [72]. This loss of
ergodicity is driven by the rarefaction of topological
defects, which hinders magnetic relaxation both in nu-
merical simulations and in experiment [52,72–76] and
will ultimately lead to ergodicity breaking between
topological sectors [53]. However, the crossover to the
low-temperature spin-liquid susceptibility is completed
before ergodicity is lost, allowing for an extrapolation
into the Coulomb phase with associated topological-
sector fluctuations.
Finally for this section, we remark that the bulk-

susceptibility measurements are in close agreement with
the predictions of the NNSI, as regards the Curie-law
crossover (Figs. 4 and 6). At first sight, this result is
surprising, given that the susceptibility estimated by neu-
tron scattering at the Brillouin-zone center (0,0,2) does not
show the full crossover. To explain this difference, one
should consider, among other things, that the neutron
scattering, even at the zone center, probes spin correlations
over much smaller length scales than the bulk measure-
ment. The applied field for the bulk measurement is
corrected for the spatial truncation of the magnetic
dipole-dipole interaction by using a standard demagnetiz-
ing factor, while agreement between neutron scattering
and bulk measurements occurs through the fluctuation-
dissipation relation. Tracking down the precise cause of
the difference defines an intriguing problem for future
consideration.

VII. TOPOLOGICAL SECTORS IN
OTHER SYSTEMS

Finally, we address the question of generality, as we
have argued that the enhanced fluctuations occurring in
spin ice at low temperatures provide an implicit measure
of emergent gauge phenomena and consequent fluctuations
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in the topological sector of the gauge constraint. Similar
emergent phenomena have recently been reported in clas-
sical dimer systems [77] and in magnetic pyrochlore,
kagome, and checkerboard systems [22–26,78]. In spin-
ice models and materials, the gauge field is proportional to
the coarse-grained field of magnetic moments. Hence, it is
directly accessible through both bulk-measurement and
scattering experiments. This direct access to the gauge
field [29] makes spin ice of particular interest in this
context, as we have shown here. In pyrochlore antiferro-
magnets, the gauge field is a hidden property of the rule of
satisfied units [79] and essentially corresponds to an in-
verse mapping between antiferromagnetically coupled
spins and ferromagnetically coupled pseudospins. The lat-
ter resemble the spin-ice degrees of freedom and form an
effective magnetic field within a coarse-grained descrip-
tion [24]. Hence, the physics of the emergent gauge field is
common to both classes of systems. For the Heisenberg
antiferromagnet, within a Gaussian approximation, the
susceptibility for the pseudospin degrees of freedom is
enhanced by the same factor of 2 as the susceptibility in
spin ice, as the system is cooled into the Coulomb phase,
and is related to the stiffness of the Coulomb phase flux
field [26]. Although the pseudospin degrees of freedom are
not accessible through bulk measurement, their presence
appears in magnetic scattering in the form of SðQÞ maps
with pinch points of differently detailed form from those
for spin ice but encoding equivalent information. For
nearest-neighbor models, one finds lines of constant scat-
tering, this time along the ½h; h; 0	 axes. As further neigh-
bor interactions are added, the intensity at the Brillouin-
zone center is found to dip [26], even though the lowest
energy states remain within the topologically constrained
phase space. This result seems in complete analogy with
our experimental observations along the ½0; 0; ‘	 axis in
spin ice, giving weight to our interpretation in terms of
topological-sector fluctuations of varying intensity, as the
effective length scale, ‘� 1=jQj, changes from the zone
center to the zone boundary.

VIII. CONCLUSION

The local divergence-free constraint of the Coulomb
phase in spin-ice materials allows a decomposition of the
ground-state ensemble in terms of topological sectors.
Fluctuations between sectors are clearly visible through
susceptibility measurements, as the winding numbers char-
acterizing the sectors are directly proportional to the mag-
netization. This is true only in the Coulomb phase, and, as
the system settles into that phase, dipolar spin correlations
develop, giving a Curie-law crossover between paramag-
netism and fluctuations characteristic of the topological
spin-liquid phase. The scale factor between the two Curie
laws is exactly 2 for our nearest-neighbor model on a
Husimi cactus and 2 to a very close approximation for
the NNSI model on a pyrochlore lattice. For other systems,

it may take different values, but the crossover itself appears
quite general and, together with the observation of pinch
points, can be taken as an indicator of topological-sector
fluctuations.
We have compared analytical and numerical results

for the nearest-neighbor spin-ice model with bulk-
magnetometry measurements and neutron-scattering
measurements through the structure function SðQ; TÞ for
a single crystal of Ho2Ti2O7. We find quantitative agree-
ment between theory and experiment for bulk magneto-
metry and for scattering at large Q, but near the pinch
point, at small wave vectors, the experimental scattering
intensity is suppressed compared with theory. We show,
however, that the amplitude suppression is not character-
ized by a single length scale, even though the mean mono-
pole separation scale is in the center of the range of scales
probed by neutron scattering at low temperatures. More
experimental and theoretical work is required to under-
stand these mechanisms in detail.
We believe this Curie-law crossover is, in fact, a general

feature of many frustrated systems [56], apparent as TSF in
spin-ice materials and encoded into the scattering pattern
of related antiferromagnets. As a consequence, the stan-
dard Curie-Weiss picture at high temperatures appears to
be incomplete and should be used with caution. Further
work in this direction, and, in particular, in potential
quantum spin-liquid compounds—herbertsmithite [80],
Tb2Ti2O7 [81–83], Yb2Ti2O7 [12,84]—would be particu-
larly interesting.
It is remarkable that, in spin ice, a completely local

probe readily accessible by experiment is able to identify
fluctuations between topological sectors, i.e., the differ-
ence between ‘‘topological constraints’’ and ‘‘topological
order.’’ Until now, this task necessarily fell to nonlocal
probes, such as measures of the winding number, or the
topological-entanglement entropy [18,19]. In gapless U(1)
quantum liquids, the notion of topological-entanglement
entropy is expected to be ill defined [85]. In light of the
revelation that there may be other, as yet undiscovered
topological invariants in related systems [20,21], it is in-
teresting to speculate whether similar probes may prove
instrumental in characterizing this important class of topo-
logical order in the future.
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APPENDIX: DETAILS OF NEUTRON-
SCATTERING EXPERIMENTS

Neutron-scattering data from three different experi-
ments have been presented. In Fig. 6(b), the temperature
dependence of the intensity at [0,0,0.9] was obtained using
a large flux-grown single crystal of Ho2Ti2O7 and IN14
triple-axis spectrometer at the the Institut Laue-Langevin.
The IN14 was operated with a graphite monochromator
and analyzer. Detailed energy scans of the magnetic scat-
tering showed that it is quasielastic, with an energy width
below 0.1 meV for temperatures below about 200 K.
We found that, for the temperature scale of interest
(0.1–100 K), our measurements integrated all magnetic
fluctuations in the relevant energy window and provided
a good measure of SðQÞ. This sample and experimental
configuration were also reported in Ref. [86].

The other reciprocal space positions were investigated in
a second experiment using a large crystal of Ho2Ti2O7

grown in an image furnace. In this experiment, IN14 was
operated in polarized mode, with a Heusler analyzer, giv-
ing a similar energy resolution. The reported intensities
were obtained by combining measurements of spin-flip and
non-spin-flip scattering with vertical incident polarization.
Further results of this experiment are as yet unpublished.

The data discussed in Fig. 7 were obtained using the D7
diffuse-scattering spectrometer at the ILL and the second
sample mentioned above. These data were extracted from a
series of reciprocal space maps, some of which were
originally presented in Ref. [29], again combining the
spin-flip and non-spin-flip cross sections. In this case,
scattering was integrated up to the incident energy
(3.5 meV). It is known that there is no significant inelastic
scattering in Ho2Ti2O7 in this temperature range [87], and
the very small quasielastic broadening [61] would have
also been integrated in the triple-axis experiments. Thus,
all three experiments correspond equally well to a mea-
surement of SðQÞ.
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C. Marin, and S. Vanishri, Low-Temperature
Magnetization in Geometrically Frustrated Tb2Ti2O7,
Phys. Rev. B 86, 020410 (2012).

[75] G. Ehlers, A. L. Cornelius, M. Orendac, M. Kajnakova, T.
Fennell, S. T. Bramwell, and J. S. Gardner, Dynamical
Crossover in ’Hot’ Spin Ice, J. Phys. Condens. Matter
15, L9 (2003).

[76] L. R. Yaraskavitch, H.M. Revell, S. Meng, K.A. Ross,
H.M. L. Noad, H. A. Dabkowska, B. D. Gaulin, and J. B.
Kycia, Spin Dynamics in the Frozen State of the Dipolar

Spin Ice Material Dy2Ti2O7, Phys. Rev. B 85, 020410
(2012).

[77] D. A. Huse, W. Krauth, R. Moessner, and S. L. Sondhi,
Coulomb and Liquid Dimer Models in Three Dimensions,
Phys. Rev. Lett. 91, 167004 (2003).

[78] G. Misguich, B. Bernu, and L. Pierre, Determination of the
Exchange Energies in Li2VOSiO4 from a High-
Temperature Series Analysis of the Square-Lattice
Jð1Þ-Jð2Þ Heisenberg Model, Phys. Rev. B 68, 113409
(2003).

[79] R. Moessner, Magnets with Strong Geometric Frustration,
Can. J. Phys. 79, 1283 (2001).

[80] P. Mendels, F. Bert, M.A. de Vries, A. Olariu, A.
Harrison, F. Duc, J. C. Trombe, J. S. Lord, A. Amato,
and C. Baines, Quantum Magnetism in the Paratacamite
Family: Towards an Ideal Kagome Lattice, Phys. Rev.
Lett. 98, 077204 (2007).

[81] J. S. Gardner, A. Keren, G. Ehlers, C. Stock, E. Segal,
J.M. Roper, B. Fak, M.B. Stone, P. R. Hammar, D. H.
Reich et al., Dynamic Frustrated Magnetism in Tb2Ti2O7

at 50 mK, Phys. Rev. B 68, 180401 (2003).
[82] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan,

Magnetic Pyrochlore Oxides, Rev. Mod. Phys. 82, 53
(2010).

[83] T. Fennell, M. Kenzelmann, B. Roessli, M.K. Haas, and
R. J. Cava, Power-Law Spin Correlations in the
Pyrochlore Antiferromagnet Tb2Ti2O7, Phys. Rev. Lett.
109, 017201 (2012).

[84] J. D. Thompson, P. A. McClarty, and M. J. P. Gingras,
Local Susceptibility of the Yb2Ti2O7 Rare Earth
Pyrochlore Computed from a Hamiltonian with
Anisotropic Exchange, J. Phys. Condens. Matter 23,
164219 (2011).

[85] H. Ju, A. B. Kallin, P. Fendley, M.B. Hastings, and R.G.
Melko, Entanglement Scaling in Two-Dimensional
Gapless Systems, Phys. Rev. B 85, 165121 (2012).

[86] S. T. Bramwell and M. J. P. Gingras, Spin Ice State in
Frustrated Magnetic Pyrochlore Materials, Science 294,
1495 (2001).

[87] S. Rosenkranz, A. P. Ramirez, A. Hayashi, R. J. Cava, R.
Siddharthan, and B. S. Shastry, Crystal-Field Interaction
in the Pyrochlore Magnet Ho2Ti2O7, J. Appl. Phys. 87,
5914 (2000).

TOPOLOGICAL-SECTOR FLUCTUATIONS AND CURIE-LAW . . . PHYS. REV. X 3, 011014 (2013)

011014-13

http://dx.doi.org/10.1103/PhysRevB.23.232
http://dx.doi.org/10.1103/PhysRevB.23.232
http://dx.doi.org/10.1007/BF01012715
http://dx.doi.org/10.1103/PhysRevLett.107.177202
http://arXiv.org/abs/1212.2112
http://dx.doi.org/10.1103/PhysRevLett.101.037204
http://dx.doi.org/10.1103/PhysRevLett.101.037204
http://dx.doi.org/10.1103/PhysRevLett.87.067203
http://dx.doi.org/10.1103/PhysRevLett.103.247001
http://dx.doi.org/10.1103/PhysRevB.84.115129
http://dx.doi.org/10.1103/PhysRevB.84.115129
http://dx.doi.org/10.1103/PhysRevB.69.064414
http://dx.doi.org/10.1088/0953-8984/12/40/103
http://dx.doi.org/10.1103/PhysRevB.86.020410
http://dx.doi.org/10.1088/0953-8984/15/2/102
http://dx.doi.org/10.1088/0953-8984/15/2/102
http://dx.doi.org/10.1103/PhysRevB.85.020410
http://dx.doi.org/10.1103/PhysRevB.85.020410
http://dx.doi.org/10.1103/PhysRevLett.91.167004
http://dx.doi.org/10.1103/PhysRevB.68.113409
http://dx.doi.org/10.1103/PhysRevB.68.113409
http://dx.doi.org/10.1139/p01-123
http://dx.doi.org/10.1103/PhysRevLett.98.077204
http://dx.doi.org/10.1103/PhysRevLett.98.077204
http://dx.doi.org/10.1103/PhysRevB.68.180401
http://dx.doi.org/10.1103/RevModPhys.82.53
http://dx.doi.org/10.1103/RevModPhys.82.53
http://dx.doi.org/10.1103/PhysRevLett.109.017201
http://dx.doi.org/10.1103/PhysRevLett.109.017201
http://dx.doi.org/10.1088/0953-8984/23/16/164219
http://dx.doi.org/10.1088/0953-8984/23/16/164219
http://dx.doi.org/10.1103/PhysRevB.85.165121
http://dx.doi.org/10.1126/science.1064761
http://dx.doi.org/10.1126/science.1064761
http://dx.doi.org/10.1063/1.372565
http://dx.doi.org/10.1063/1.372565

