279 research outputs found

    Refining Humane Endpoints in Mouse Models of Disease by Systematic Review and Machine Learning-Based Endpoint Definition

    Get PDF
    Ideally, humane endpoints allow for early termination of experiments by minimizing an animal’s discomfort, distress and pain, while ensuring that scientific objectives are reached. Yet, lack of commonly agreed methodology and heterogeneity of cut-off values published in the literature remain a challenge to the accurate determination and application of humane endpoints. With the aim to synthesize and appraise existing humane endpoint definitions for commonly used physiological parameters, we conducted a systematic review of mouse studies of acute and chronic disease models, which used body weight, temperature and/or sickness scores for endpoint definition. In the second part of the study, we used previously published and unpublished data on weight, temperature and sickness scores from mouse models of sepsis and stroke and applied machine learning algorithms to assess the usefulness of this method for parameter selection and endpoint definition across models. Studies were searched for in two electronic databases (MEDLINE/Pubmed and Embase). Out of 110 retrieved full-text manuscripts, 34 studies were included. We found large intra- and inter-model variance in humane endpoint determination and application due to varying animal models, lack of standardized experimental protocols and heterogeneity of performance metrics (part 1). Machine learning models trained with physiological data and sickness severity score or modified DeSimoni neuroscore identified animals with a high risk of death at an early time point in both mouse models of stroke (male: 93.2% at 72h post-treatment; female: 93.0% at 48h post-treatment) and sepsis (96.2% at 24h post-treatment), thus demonstrating generalizability in endpoint determination across models (part 2)

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter ε≪1\varepsilon\ll 1 controls the separation of time scales and the limit ε→0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time ε→0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the ε\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an ε\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order ε2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    Zitterbewegung and semiclassical observables for the Dirac equation

    Full text link
    In a semiclassical context we investigate the Zitterbewegung of relativistic particles with spin 1/2 moving in external fields. It is shown that the analogue of Zitterbewegung for general observables can be removed to arbitrary order in \hbar by projecting to dynamically almost invariant subspaces of the quantum mechanical Hilbert space which are associated with particles and anti-particles. This not only allows to identify observables with a semiclassical meaning, but also to recover combined classical dynamics for the translational and spin degrees of freedom. Finally, we discuss properties of eigenspinors of a Dirac-Hamiltonian when these are projected to the almost invariant subspaces, including the phenomenon of quantum ergodicity

    A gauge model for quantum mechanics on a stratified space

    Full text link
    In the Hamiltonian approach on a single spatial plaquette, we construct a quantum (lattice) gauge theory which incorporates the classical singularities. The reduced phase space is a stratified K\"ahler space, and we make explicit the requisite singular holomorphic quantization procedure on this space. On the quantum level, this procedure furnishes a costratified Hilbert space, that is, a Hilbert space together with a system which consists of the subspaces associated with the strata of the reduced phase space and of the corresponding orthoprojectors. The costratified Hilbert space structure reflects the stratification of the reduced phase space. For the special case where the structure group is SU(2)\mathrm{SU}(2), we discuss the tunneling probabilities between the strata, determine the energy eigenstates and study the corresponding expectation values of the orthoprojectors onto the subspaces associated with the strata in the strong and weak coupling approximations.Comment: 38 pages, 9 figures. Changes: comments on the heat kernel and coherent states have been adde

    Moyal star product approach to the Bohr-Sommerfeld approximation

    Full text link
    The Bohr-Sommerfeld approximation to the eigenvalues of a one-dimensional quantum Hamiltonian is derived through order â„Ź2\hbar^2 (i.e., including the first correction term beyond the usual result) by means of the Moyal star product. The Hamiltonian need only have a Weyl transform (or symbol) that is a power series in â„Ź\hbar, starting with â„Ź0\hbar^0, with a generic fixed point in phase space. The Hamiltonian is not restricted to the kinetic-plus-potential form. The method involves transforming the Hamiltonian to a normal form, in which it becomes a function of the harmonic oscillator Hamiltonian. Diagrammatic and other techniques with potential applications to other normal form problems are presented for manipulating higher order terms in the Moyal series.Comment: 27 pages, no figure

    Cellular Adhesion Gene SELP Is Associated with Rheumatoid Arthritis and Displays Differential Allelic Expression.

    Get PDF
    In rheumatoid arthritis (RA), a key event is infiltration of inflammatory immune cells into the synovial lining, possibly aggravated by dysregulation of cellular adhesion molecules. Therefore, single nucleotide polymorphisms of 14 genes involved in cellular adhesion processes (CAST, ITGA4, ITGB1, ITGB2, PECAM1, PTEN, PTPN11, PTPRC, PXN, SELE, SELP, SRC, TYK2, and VCAM1) were analyzed for association with RA. Association analysis was performed consecutively in three European RA family sample groups (Nfamilies = 407). Additionally, we investigated differential allelic expression, a possible functional consequence of genetic variants. SELP (selectin P, CD62P) SNP-allele rs6136-T was associated with risk for RA in two RA family sample groups as well as in global analysis of all three groups (ptotal = 0.003). This allele was also expressed preferentially (p<10-6) with a two- fold average increase in regulated samples. Differential expression is supported by data from Genevar MuTHER (p1 = 0.004; p2 = 0.0177). Evidence for influence of rs6136 on transcription factor binding was also found in silico and in public datasets reporting in vitro data. In summary, we found SELP rs6136-T to be associated with RA and with increased expression of SELP mRNA. SELP is located on the surface of endothelial cells and crucial for recruitment, adhesion, and migration of inflammatory cells into the joint. Genetically determined increased SELP expression levels might thus be a novel additional risk factor for RA

    Depression does not affect the treatment outcome of CBT for panic and agoraphobia: results from a multicenter randomized trial

    Get PDF
    BACKGROUND: Controversy surrounds the questions whether co-occurring depression has negative effects on cognitive-behavioral therapy (CBT) outcomes in patients with panic disorder (PD) and agoraphobia (AG) and whether treatment for PD and AG (PD/AG) also reduces depressive symptomatology. METHODS: Post-hoc analyses of randomized clinical trial data of 369 outpatients with primary PD/AG (DSM-IV-TR criteria) treated with a 12-session manualized CBT (n = 301) and a waitlist control group (n = 68). Patients with comorbid depression (DSM-IV-TR major depression, dysthymia, or both: 43.2% CBT, 42.7% controls) were compared to patients without depression regarding anxiety and depression outcomes (Clinical Global Impression Scale [CGI], Hamilton Anxiety Rating Scale [HAM-A], number of panic attacks, Mobility Inventory [MI], Panic and Agoraphobia Scale, Beck Depression Inventory) at post-treatment and follow-up (categorical). Further, the role of severity of depressive symptoms on anxiety/depression outcome measures was examined (dimensional). RESULTS: Comorbid depression did not have a significant overall effect on anxiety outcomes at post-treatment and follow-up, except for slightly diminished post-treatment effect sizes for clinician-rated CGI (p = 0.03) and HAM-A (p = 0.008) when adjusting for baseline anxiety severity. In the dimensional model, higher baseline depression scores were associated with lower effect sizes at post-treatment (except for MI), but not at follow-up (except for HAM-A). Depressive symptoms improved irrespective of the presence of depression. CONCLUSIONS: Exposure-based CBT for primary PD/AG effectively reduces anxiety and depressive symptoms, irrespective of comorbid depression or depressive symptomatology

    Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus

    Get PDF
    Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop’s association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, β-L-oxalyl-2,3-diaminopropionic acid (β-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce β-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxi
    • …
    corecore