265 research outputs found

    PMS62 Nominal Group Technique to Select Attributes for Discrete Choice Experiments

    Get PDF

    The relation between paracetamol use and asthma:a GA2LEN European case-control study

    Get PDF
    Studies from the UK and USA suggest that frequent use of paracetamol (acetaminophen) may increase the risk of asthma, but data across Europe are lacking. As part of a multicentric case-control study organised by the Global Allergy and Asthma European Network (GA(2)LEN), it was examined whether or not frequent paracetamol use is associated with adult asthma across Europe. The network compared 521 cases with a diagnosis of asthma and reporting of asthma symptoms within the last 12 months with 507 controls with no diagnosis of asthma and no asthmatic symptoms within the last 12 months across 12 European centres. All cases and controls were selected from the same population, defined by age (2045 yrs) and place of residence. In a random effects meta-analysis, weekly use of paracetamol, compared with less frequent use, was strongly positively associated with asthma after controlling for confounders. There was no evidence for heterogeneity across centres. No association was seen between use of other analgesics and asthma. These data add to the increasing and consistent epidemiological evidence implicating frequent paracetamol use in asthma in diverse populations

    Systemic Inflammation in Young Adults Is Associated with Abnormal Lung Function in Middle Age

    Get PDF
    BACKGROUND:Systemic inflammation is associated with reduced lung function in both healthy individuals and those with chronic obstructive pulmonary disease (COPD). Whether systemic inflammation in healthy young adults is associated with future impairment in lung health is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:We evaluated the association between plasma fibrinogen and C-reactive protein (CRP) in young adults and lung function in the Coronary Artery Risk Development in Young Adults cohort study. Higher year 7 fibrinogen was associated with greater loss of forced vital capacity (FVC) between years 5 and 20 (439 mL in quartile 4 vs. 398 mL in quartile 1, P<0.001) and forced expiratory volume in 1 second (FEV(1)) (487 mL in quartile 4 vs. 446 mL in quartile 1, P<0.001) independent of cigarette smoking, body habitus, baseline lung function and demographic factors. Higher year 7 CRP was also associated with both greater loss of FVC (455 mL in quartile 4 vs. 390 mL in quartile 1, P<0.001) and FEV(1) (491 mL in quartile 4 vs. 442 mL in quartile 1, P = 0.001). Higher year 7 fibrinogen and CRP were associated with abnormal FVC at year 20 (odds ratio (OR) per standard deviation 1.51 (95% confidence interval (CI): 1.30-1.75) for fibrinogen and 1.35 (95% CI: 1.14-1.59) for CRP). Higher year 5 fibrinogen was additionally associated with abnormal FEV(1). A positive interaction was observed between pack-years cigarette smoking and year 7 CRP for the COPD endpoint, and among participants with greater than 10 pack-years of cigarette exposure, year 7 CRP was associated with greater odds of COPD at year 20 (OR per standard deviation 1.53 (95% CI: 1.08-2.16). CONCLUSION/SIGNIFICANCE:Systemic inflammation in young adults is associated with abnormal lung function in middle age. In particular, elevated CRP may identify vulnerability to COPD among individuals who smoke. TRIAL REGISTRATION:ClinicalTrials.gov NCT00005130

    Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film

    Get PDF
    Stimuli-responsive colorimetric sensors are promising for various industrial and medical applications due to the capability of simple, fast, and inexpensive visualization of external stimuli. Here we demonstrate a thermoresponsive, smart colorimetric patch based on a thermoresponsive plasmonic microgel embedded in a stretchable hydrogel film. To achieve a fast and efficient thermoresponsive color change, raspberry-shaped plasmonic microgels were fabricated by decorating gold nanoparticles (AuNPs) on poly(N-isopropylacrylamide) (PNIPAM) microgels, which exhibit reversible and strain-insensitive color shifts (between red and grayish violet) in response to a temperature change. The smart colorimetric patch containing a plasmonic microgels exhibits a significant extinction peak shift (176 nm) in a short time (1 s), with a temperature-sensing resolution of 0.2 degrees C. Moreover, the transition temperature of the plasmonic microgel can be finely tuned by additives and comonomers, so that the exquisite temperature visualization can be conducted over a wide temperature range of 25-40 degrees C by assembling plasmonic microgel films with different transition temperatures into an array patch. For proof-of-concept demonstrations, a freestanding smart colorimetric patch was utilized as a spatial temperature scanner and a colorimetric thermometer for a thermoresponsive actuator, which is potentially applicable in smart, wearable sensors and soft robotics

    Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis

    Get PDF
    A coaxial dielectric barrier discharge (DBD) reactor has been developed for plasma-catalytic conversion of pure CO2 into CO and O2 at low temperatures (<150°C) and atmospheric pressure. The effect of specific energy density (SED) on the performance of the plasma process has been investigated. In the absence of a catalyst in the plasma, the maximum conversion of CO2 reaches 21.7% at a SED of 80kJ/L. The combination of plasma with BaTiO3 and TiO2 photocatalysts in the CO2 DBD slightly increases the gas temperature of the plasma by 6-11°C compared to the CO2 discharge in the absence of a catalyst at a SED of 28kJ/L. The synergistic effect from the combination of plasma with photocatalysts (BaTiO3 and TiO2) at low temperatures contributes to a significant enhancement of both CO2 conversion and energy efficiency by up to 250%. The UV intensity generated by the CO2 discharge is significantly lower than that emitted from UV lamps that are used to activate photocatalysts in conventional photocatalytic reactions, which suggests that the UV emissions generated by the CO2 DBD only play a very minor role in the activation of the BaTiO3 and TiO2 catalysts in the plasma-photocatalytic conversion of CO2. The synergy of plasma-catalysis for CO2 conversion can be mainly attributed to the physical effect induced by the presence of catalyst pellets in the discharge and the dominant photocatalytic surface reaction driven by the plasma

    Systemic inflammation in chronic obstructive pulmonary disease: a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated circulating levels of several inflammatory biomarkers have been described in selected patient populations with COPD, although less is known about their population-based distribution. The aims of this study were to compare the levels of several systemic biomarkers between stable COPD patients and healthy subjects from a population-based sample, and to assess their distribution according to clinical variables.</p> <p>Methods</p> <p>This is a cross-sectional study design of participants in the EPI-SCAN study (40-80 years of age). Subjects with any other condition associated with an inflammatory process were excluded. COPD was defined as a post-bronchodilator FEV<sub>1</sub>/FVC < 0.70. The reference group was made of non-COPD subjects without respiratory symptoms, associated diseases or prescription of medication. Subjects were evaluated with quality-of-life questionnaires, spirometry and 6-minute walk tests. Serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukins (IL-6 and IL-8), alpha1-antitrypsin, fibrinogen, albumin and nitrites/nitrates (NOx) were measured.</p> <p>Results</p> <p>We compared 324 COPD patients and 110 reference subjects. After adjusting for gender, age, BMI and tobacco consumption, COPD patients showed higher levels of CRP (0.477 ± 0.023 vs. 0.376 ± 0.041 log mg/L, p = 0.049), TNF-α (13.12 ± 0.59 vs. 10.47 ± 1.06 pg/mL, p = 0.033), IL-8 (7.56 ± 0.63 vs. 3.57 ± 1.13 pg/ml; p = 0.033) and NOx (1.42 ± 0.01 vs. 1.36 ± 0.02 log nmol/l; p = 0.048) than controls. In COPD patients, serum concentrations of some biomarkers were related to severity and their exercise tolerance was related to serum concentrations of CRP, IL-6, IL-8, fibrinogen and albumin.</p> <p>Conclusions</p> <p>Our results provide population-based evidence that COPD is independently associated with low-grade systemic inflammation, with a different inflammatory pattern than that observed in healthy subjects.</p

    Cell death regulation during influenza A virus infection by matrix (M1) protein: a model of viral control over the cellular survival pathway

    Get PDF
    During early infection, viruses activate cellular stress-response proteins such as heat-shock proteins (Hsps) to counteract apoptosis, but later on, they modulate these proteins to stimulate apoptosis for efficient viral dissemination. Hsp70 has been attributed to modulate viral entry, transcription, nuclear translocation and virion formation. It also exerts its anti-apoptotic function by binding to apoptosis protease-activating factor 1 (Apaf-1) and disrupting apoptosome formation. Here, we show that influenza A virus can regulate the anti-apoptotic function of Hsp70 through viral protein M1 (matrix 1). M1 itself did not induce apoptosis, but enhanced the effects of apoptotic inducers. M1-small-interfering RNA inhibits virus-induced apoptosis in cells after either virus infection or overexpression of the M1 protein. M1 binds to Hsp70, which results in reduced interaction between Hsp70 and Apaf-1. In a cell-free system, the M1 protein mediates procaspase-9 activation induced by cytochrome c/deoxyadenosine triphosphate. A study involving deletion mutants confirmed the role of the C-terminus substrate-binding domain (EEVD) of Hsp70 and amino acids 128–165 of M1 for this association. The M1 mutants, which did not co-immunoprecipitate with Hsp70, failed to induce apoptosis. Overall, the study confirms the proapoptotic function of the M1 protein during influenza virus infection

    The Rotterdam Study: 2010 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in close to a 1,000 research articles and reports (see www.epib.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    The Rotterdam Study: 2012 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods
    corecore