11 research outputs found

    Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy

    Get PDF
    Correction to: EMBO Mol Med (2015) 7: 1580–1594. DOI 10.15252/emmm.201505323 | Published online 27 November 2015 EMBO Molecular Medicine 2017 vol 9 No12: 1764.Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABA(A) and glycine receptors (GABA(A)Rs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild- type gephyrin leading to a marked decrease in GABA(A)R surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.Peer reviewe

    Lessons learned from the DFNA37 gene discovery odyssey

    No full text

    NBEA: Developmental disease gene with early generalized epilepsy phenotypes

    No full text
    NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy–like phenotype in a subset of patients

    De novo variants in neurodevelopmental disorders with epilepsy

    No full text
    Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent-offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy

    Chapter 5: Genetics of Dilated Cardiomyopathy: Current Knowledge and Future Perspectives

    No full text
    Nowadays, a huge claim for personalized medicine is progressively growing, and, along this way, genetic studies represent one of the most representative steps. Dilated cardiomyopathy (DCM) can be the consequence of clearly defined external etiologic factors, such as viral infections, toxins, drugs, metabolic disorders, etc., but at least 30\u201340% of cases (and maybe more) have a prevalent genetic origin, and in the remaining part, genetics may still play an important role. With the expansion of clinical genetic testing, using high-quality next-generation sequencing (NGS) extended panels, these genetic causes of DCM have been increasingly identified. More than 50 genes, mapping to multiple biological pathways, are currently considered disease related, and causative variants can be identified in up to 35% of cases. This growing amount of genetic informations, however, is still not followed by a parallel advance toward tailored clinical management. The reasons behind this gap are currently under investigation in the scientific community: the aim of this chapter is to provide a guide through the complexity of the genotype-phenotype interaction, analyzing (1) the most frequently encountered genes in DCM, (2) technical issues in NGS, (3) controversies beyond sequencing data interpretation, (4) the contribution of environmental modifiers, and (5) evidence-based genotype-phenotype correlations in DCM

    NBEA: Developmental disease gene with early generalized epilepsy phenotypes

    Get PDF
    NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803
    corecore