3,601 research outputs found

    Exact Occupation Time Distribution in a Non-Markovian Sequence and Its Relation to Spin Glass Models

    Full text link
    We compute exactly the distribution of the occupation time in a discrete {\em non-Markovian} toy sequence which appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have non-Gaussian tails characterized by a nontrivial large deviation function which is computed explicitly. An exact mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting new question for a generic finite sized spin glass model: at a given temperature, what is the distribution (over disorder) of the thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-Kirkpatrick model with Gaussian disorder.Comment: 10 pages Revtex (two-column), 1 eps figure (included

    Critical dimensions of the diffusion equation

    Full text link
    We study the evolution of a random initial field under pure diffusion in various space dimensions. From numerical calculations we find that the persistence properties of the system show sharp transitions at critical dimensions d1 ~ 26 and d2 ~ 46. We also give refined measurements of the persistence exponents for low dimensions.Comment: 4 pages, 5 figure

    Sign-time distribution for a random walker with a drifting boundary

    Full text link
    We present a derivation of the exact sign-time distribution for a random walker in the presence of a boundary moving with constant velocity.Comment: 5 page

    Analytical results for generalized persistence properties of smooth processes

    Full text link
    We present a general scheme to calculate within the independent interval approximation generalized (level-dependent) persistence properties for processes having a finite density of zero-crossings. Our results are especially relevant for the diffusion equation evolving from random initial conditions, one of the simplest coarsening systems. Exact results are obtained in certain limits, and rely on a new method to deal with constrained multiplicative processes. An excellent agreement of our analytical predictions with direct numerical simulations of the diffusion equation is found.Comment: 21 pages, 4 figures, to appear in Journal of Physics

    Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation

    Get PDF
    Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins

    Properties of the chiral spin liquid state in generalized spin ladders

    Full text link
    We study zero temperature properties of a system of two coupled quantum spin chains subject to fields explicitly breaking time reversal symmetry and parity. Suitable choice of the strength of these fields gives a model soluble by Bethe Ansatz methods which allows to determine the complete magnetic phase diagram of the system and the asymptotics of correlation functions from the finite size spectrum. The chiral properties of the system for both the integrable and the nonintegrable case are studied using numerical techniques.Comment: 19 pages, 9eps figures, Late

    Ultrarelativistic limits of boosted dilaton black holes

    Get PDF
    We investigate the ultrarelativistic limits of dilaton black holes, black pp-branes (strings), multi-centered dilaton black hole solutions and black pp-brane (string) solutions when the boost velocity approaches the speed of light. For dilaton black holes and black pp-branes (boost is along the transverse directions), the resulting geometries are gravitational shock wave solutions generated by a single particle and membrane. For the multi-centered dilaton black hole solutions and black pp-brane solutions (boost is along the transverse directions), the limiting geometries are shock wave solutions generated by multiple particles and membranes. When the boost is along the membrane directions, for the black pp-brane and multi-centered black pp-brane solution, the resulting geometries describe general plane-fronted waves propagating along the membranes. The effect of the dilaton on the limit is considered.Comment: Revtex, 17 pages, no figure

    Landau-De Gennes theory of nematic liquid\ud crystals: the Oseen-Frank limit and beyond

    Get PDF
    We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W 1,2 , to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer.\ud \ud \ud We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions

    Dynamics of Shock Probes in Driven Diffusive Systems

    Get PDF
    We study the dynamics of shock-tracking probe particles in driven diffusive systems and also in equilibrium systems. In a driven system, they induce a diverging timescale that marks the crossover between a passive scalar regime at early times and a diffusive regime at late times; a scaling form characterises this crossover. Introduction of probes into an equilibrium system gives rise to a system-wide density gradient, and the presence of even a single probe can be felt across the entire system.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen

    The convex hull for a random acceleration process in two dimensions

    Full text link
    We compute exactly the mean perimeter and the mean area of the convex hull of a random acceleration process of duration T in two dimensions. We use an exact mapping that relates, via Cauchy's formulae, the computation of the perimeter and the area of the convex hull of an arbitrary two dimensional stochastic process [x(t); y(t)] to the computation of the extreme value statistics of the associated one dimensional component process x(t). The latter can be computed exactly for the one dimensional random acceleration process even though the process in non-Markovian. Physically, our results are relevant in describing theaverage shape of a semi-flexible ideal polymer chain in two dimensions.Comment: 17 pages, 7 figures, accepeted in Journal of Physics A: Mathematical and Theoretica
    corecore