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We study the dynamics of shock-tracking probe particles in driven diffusive systems and also in
equilibrium systems. In a driven system, they induce a diverging timescale that marks the crossover
between a passive scalar regime at early times and a diffusive regime at late times; a scaling form
characterises this crossover. Introduction of probes into an equilibrium system gives rise to a system-
wide density gradient, and the presence of even a single probe can be felt across the entire system.

A commonly used method to investigate the properties of a system is to inject probe particles and monitor their
behavior after they have equilibrated with the system under study. The dynamics of probe particles then yields
important information about the static and dynamic properties of the medium and has been used to study diverse
phenomena, ranging from the sol-gel transition in a polymer solution [1] to the growth mechanism of surfactant
assemblies [2] and correlations present in bacterial motion [3]. The steady state involves the coupled probe-medium
system, but if the concentration of probe particles is very low, it is generally assumed that the properties of the original
system are not affected greatly [1, 2, 3]. In this paper, we discuss the validity of this assumption by studying simple
lattice gas models, and find that in certain circumstances it can break down in interesting ways. We characterize the
types of behaviour that occur by studying the displacement of a probe particle as a function of time, the correlations
between different probes particles, and their effect on the medium. Depending on the system under study, different
behaviours are found in the low-concentration limit, ranging from diverging correlation lengths and power law decays,
to effects which are felt over macroscopic distances throughout the system. We relate these differences to an interesting
interplay between the equilibrium and nonequilibrium characteristics of the medium and the probe particles.

We focus on the effects of probe particles on one-dimensional driven diffusive systems, and their equilibrium coun-
terparts. We mainly consider probes which exchange with the particles and holes of the medium with equal rate
but in opposite directions. Such probes tend to settle in regions of strong density variations (shocks) and thus serve
to track the locations and movements of shocks. We consider primarily, but not exclusively, a medium in which
the shock-tracking probes (STPs) reduce to second class particles [4, 5], i.e. they behave as holes for the particles
and as particles for the holes. STPs are intrinsically nonequilibrium probes, as they evolve through moves which do
not respect detailed balance. We will see below that they have very strong effects on a medium that is originally in
equilibrium: even a single probe generates a density perturbation which extends over macroscopic distances. However,
when immersed in a medium that is in a current-carrying nonequilibrium state, the perturbation produced by a single
probe particle decays to zero, but as a slow power law; a finite density of probes brings in a correlation length which
diverges strongly in the low concentration limit. We find that these broad conclusions remain valid for a class of
models with nearest neighbor interaction and also with an extended range of particle hopping.

Recently, Levine et al. [6, 7] have studied the behavior of STPs in a driven diffusive system whose steady state
has nearest neighbor Ising measure [8]. When only a finite number of probes are present, the medium induces a
long-ranged attraction between pairs of successive STPs, as shown earlier by Derrida et al. [5]. The distribution of
the separation between a pair follows a power law with a power which depends continuously on the strength of the
Ising interaction [6]. Consequences for the phase diagram with a macroscopic number of STPs were explored in [7]
. In this paper, we are interested in the dynamical properties of STPs primarily for the case of uncorrelated particle
occupancies. We find that these properties are governed by a time-scale τ which diverges as the STP concentration
approaches zero. This time-scale is related to a diverging correlation length which characterises the density profile
around a probe particle [5]. τ enters into a scaling description of the crossover between a ‘passive scalar advection’
regime and a diffusive regime which sets in at longer times. Similar behaviour is found, though with some interesting
variations, also in members of the class of k-hop models, which are driven diffusive systems with longer ranged hopping
of particles [9].

Even more striking is the effect of STPs on a system which is initially in equilibrium. With the introduction of a
single probe, the medium develops a density gradient across macroscopic distances and a concomitant shock around
the probe. Interestingly, the resulting state shows a signature of an inhomogeneous product measure. The dynamical
properties of the medium remain characteristic of local equilibrium, despite the fact that there is a small current in
the system.

The system is defined on a 1-d lattice with periodic boundary conditions. We denote particles and holes in the
original system by ‘+’ and ‘−’, respectively, and the probe particles by ‘0’. The dynamical moves involve the
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FIG. 1: Mean squared displacement of particles and probes for L = 2048 and ρ0 = 0.15, showing the initial linear growth of
C+(t) and the nonlinear growth of C0(t). The dashed lines depict power laws with exponent 4/3 and 1. The late-time oscillations
are due to the existence of kinematic waves in a finite periodic system.

exchanges [4, 5]:

(a) + − → − +

(b) + 0 → 0 + (1)

(c) 0− → −0

All moves take place with equal rate. Since a probe exchanges with a particle and a hole in opposite directions, it
tends to migrate to places where there is an excess of holes to its left and particles to its right, i.e. a shock.

In the absence of STPs the system reduces to the asymmetric simple exclusion process (ASEP), which is a paradigm
of driven diffusive systems [10]. With probes present, we see that a particle (hole) exchanges with a hole (particle)
and a probe in exactly the same way. The STPs in this case reduce to second class particles [4, 5]. If ρ and ρ0 are the
densities of particles and probes respectively, then a particle behaves as if in an ASEP with an effective hole density
(1 − ρ), while a hole finds itself in an ASEP with an effective particle density (ρ + ρ0). STPs are correlated but the
exact steady state measure for the system can be found using the matrix method [5]. Throughout this paper, we will
consider equal densities of particles and holes in the medium, which implies ρ0 = 1 − 2ρ.

To monitor the dynamics, we measured the mean squared displacement of tagged particles in the medium, and
tagged STPs, using Monte Carlo simulation after the system has reached steady state. Let Yk(t) be the position of
the kth particle at time t. We monitor the mean squared displacement defined as

C(t) = 〈(Yk(t) − Yk(0) − 〈Yk(t) − Yk(0)〉)
2
〉 (2)

where the average is over the steady state ensemble of initial configurations. We denote by C0(t) and C+(t) the
mean squared displacements of probes and particles, respectively. Monte Carlo simulation results show interesting
differences between C+(t) and C0(t) with a low but finite density of probes [Fig.(1)]. In contrast to the linear increase
of C+(t), C0(t) increases non-linearly in the range of time considered. The behaviors of both C+ and C0, including
long-time crossovers, are discussed in detail below.

Tagged particles in the medium behave as if in a regular ASEP, for which C+(t) is known to grow linearly in time
for an infinite system [11]. In a finite system of size L, C+(t) is nonmonotonic due to the existence of a kinematic wave
which carries density fluctuations through the system with speed dJ

dρ = (1− 2ρ) [12, 13], where J is the current, given

by ρ(1 − ρ). Since the average speed of the tagged particle is J/ρ = (1 − ρ), it moves from one density patch to the
other with relative speed ρ; the mean squared displacement increases linearly, since each patch contributes a random
excess to the relative velocity of the tagged particle. The subsequent dips in the mean squared displacement, as seen
in Fig.(1), correspond to the return of a tagged particle to its initial environment in time L/ρ; the lower envelope of
the curve in Fig.(1) grows as t2/3 as long as t ≪ Lz [14, 15].

For tagged probe particles, C0(t) shows a crossover from an initial passive scalar advection regime to a long-
time diffusive regime. The associated crossover occurs on a timescale τ that diverges strongly as the probe density
approaches zero. Ferrari and Fontes have calculated the asymptotic (t → ∞) behavior of C0(t) for STPs [16] and
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FIG. 2: Scaling collapse for mean squared displacement of tagged probe particles with densities 0.08, 0.1, 0.12, 0.15 (moving
upwards). The upper curve shows C0(t) for ǫ = 0 (L = 131072, averaged over 100 histories) and the lower curve shows C0(t)
for ǫ = 0.2 (L = 16384, averaged over 1000 histories). The dashed line shows a power law decay with exponent −1/3.

shown that C0(t) ≈ Dt with diffusion constant D = [ρ(1 − ρ) + (ρ + ρ0)(1 − ρ − ρ0)] /ρ0. For small times, in the
limit of low concentration of the probe particles, one would expect that each STP would behave as an individual
non-interacting particle, subject only to the fluctuations of the medium. The mean squared displacement of a single
probe has been shown analytically to grow as t4/3 using the matrix product method [17]. This behavior agrees with
the results for particles sliding down on surface evolving through Kardar-Parisi-Zhang dynamics, where C0(t) grows
as t2/z, with z = 3/2 [18]. We propose the following scaling form in the limit of large t and τ

C0(t) ∼ t4/3F

(

t

τ

)

(3)

in terms of the crossover time τ whose dependence on ρ0 is given below. Here F (y) is a scaling function which
approaches a constant as y → 0. For y ≫ 1, we must have F (y) ∼ y−1/3, in order to reproduce C(t) ≈ Dt.
The timescale τ is related to the correlation length: at sufficiently large distance r from an STP, the shock profile
decays as r−1/2 exp(−r/ξ) where ξ has been calculated by Derrida et al. [5]. In the limit of small ρ0, it reduces to
ξ ≈ 4ρ(1 − ρ)/ρ2

0 which diverges as ρ0 → 0. Relating τ to ξ through τ ∼ ξz with z = 3/2 then implies τ ∼ ρ−3
0 . We

verified the scaling form by Monte Carlo simulation. We were able to circumvent equilibrating by directly generating
steady state initial configurations, following the prescription in [19]. In Fig.(2), we plot C(t)/t4/3 vs t/τ for various
values of ρ0 and obtain a good scaling collapse, except for very small values of t which fall outside the scaling regime.

A nontrivial check of the scaling form comes from examining the dependence of τ on ρ0. Matching the early and
late time form for C0(t) at τ ∼ ρ−3

0 then yields D ∼ ρ−1
0 , in agreement with [16]. Yet another check comes from

considering the implication for a system with a finite size L. Finite size scaling would suggest that once L is smaller
than ρ−2

0 , the behavior D ∼ ξ1/2 found above should give way to D ∼ L1/2. This is in conformity with the calculation
of [20].

To track dissipation in a single component system, one can perform a Galilean shift to keep up with the kinematic
wave [14]. This is not possible in our system since there are two kinematic waves with different velocities ±(1 − 2ρ)
corresponding to the two ASEPs with densities ρ and ρ + ρ0. We thus use the method of van Beijeren [21], wherein
we monitor the quantity

B(t) =
(

Yk(t) − Yk(0) − (Yk(t) − Yk(0))
)2

(4)

where the overhead bar denotes averaging over different evolution histories, starting from a fixed initial configuration
drawn from the steady state ensemble. Note that in this averaging process, the initial pattern of density fluctuations
around a particular tagged probe is identical for all evolution histories. The mean (Yk(t) − Yk(0)) shows fluctuations
superposed on a linear growth law. These fluctuations are determined by the density pattern in the initial configu-
ration [22]. B(t) therefore gives the spread of this pattern with time. We find that B(t) increases as t2/3 for large
t, and would expect a scaling function to connect this regime to the small time regime B(t) ∼ t4/3, characteristic of
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FIG. 3: Scaling collapse for B(t) with probe densities 0.08, 0.1, 0.12, 0.15 (moving upawrds). The two curves correspond to ǫ = 0
and ǫ = 0.2 (L = 16384, averaged over 25 initial configurations and 40 evolution histories for each). The dashed line shows a
power law decay with exponent −2/3.

single particle behavior. In the limit of large t and small ρ0, we expect

B(t) ∼ t4/3G

(

t

τ

)

. (5)

The scaling function G(y) should approach a constant as y → 0 while for y ≫ 1, one expects G(y) ∼ y−2/3. Our
simulation results [Fig.(3)] are consistent with this scaling form.

Similar results are found for shock trackers in a driven diffusive system in which there is an Ising interaction
V = −ǫ[(n(i) − 1

2 )(n(j) − 1
2 )] between the neighboring particles 〈ij〉 in the medium [8]. The dynamical moves are as

specified in Eq.(1) but the rates are different: while the moves (b) and (c) occur with rate 1, move (a) takes place with
a rate (1 − ∆V ) where ∆V is the change in Ising energy [8]. Note that in this case, STPs do not behave as second
class particles. In [6], it has been shown that with a finite number of probes, the medium induces an attraction and
the separation s between two consecutive probes follows the distribution P (s) ∼ s−b for large s. The coefficient b
varies continuously with ǫ; in the non-interacting case, b = 3/2. If si is the separation between the i-th and (i + 1)-th
probe and Rm is the distance between the first and the (m + 1)-th probe, then Rm =

∑m
i=1 si. The quantity Rm

then follows a Lévy distribution with a norming constant ∼ m1/(b−1), so long as Rm < ξ. This in turn implies that

the correlation length ξ ∼ ρ
−1/(2−b)
0 and hence τ ∼ ξz0 ∼ ρ

−z0/(2−b)
0 , where z0 is the dynamical critical exponent of

the system. Our numerical simulations indicate that for the ranges of ǫ, ρ0 and t studied (Fig.(2)and (3) ), C0(t) and
B(t) continue to show a crossover at a timescale τ ∼ ρ−3

0 , surprisingly similar to the non-interacting case [23].
To investigate the effect of probes in an equilibrium system, we studied STPs in a symmetric exclusion process

(SEP). The dynamical rules remain the same as in Eq.(1), except that (a) changes to +− ⇋ −+. All moves take place
with equal rate. This model is a special case of the model proposed by Arndt et al. with the asymmetry parameter
set equal to its critical value q = 1 [24].

In the absence of probes the system obeys detailed balance and the state is described by a uniform product measure.
With the introduction of a single probe, the condition of detailed balance is violated and there is a small (∼ 1/L)
current in the system. In this nonequilibrium steady state, there is a system-wide density gradient around the probe.

Figure (4) shows the density ρ(r) ≡ 〈n(r)〉 , at a distance r away from the probe, where n(r) is the occupancy at
r. We find that ρ(r) = A(1 − r/L) with A ≃ 1. The inset in Fig.(4) shows the spatial two point correlation function
defined as g(r, ∆r) = 〈n(r)n(r + ∆r)〉 − ρ(r)ρ(r + ∆r), for a fixed value of r. The fact that g(r, ∆r) is close to zero
points to the existence of an inhomogeneous product measure state.

The mean squared displacement of the probe grows diffusively with a diffusion constant D ∼ 1/L (Fig.(5)). This
follows from the fact that for equal densities of particles and holes in the medium, the probe has an equal probability
to move to the left or to the right and from the form of ρ(r) given above, it follows that this probability ∼ 1/L in
each Monte Carlo step. Far from the probe, the local properties of the medium still resemble those of the SEP. We
demonstrate this by measuring the mean squared displacement of a tagged particle C+(r, t) and comparing with the

SEP result C+(t) ≈
√

(

2
π

)

(1 − ρ)/ρ t1/2 [10]. In Fig.(5), we present data for C+(r, t) for different values of local

densities.
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FIG. 4: Density profile as a function of the scaled distance away from the probe in the SEP for L = 513, 1025, 2049. The data
is averaged over 50000 histories. The inset shows g(r,∆r) for r = 1024 (L = 2049, averaged over 104 histories) and illustrates
that the pair correlation is close to zero.
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FIG. 5: Scaled mean squared displacement of tagged particles at distances r = 580, 985, 1390, away from the probe, correspond-
ing to ρ(r) = 0.72, 0.52, 0.32. (L = 2049, averaged over 104 histories). The curves are seen to merge when the coefficient
`

2
π

´1/2 1−ρ(r)
ρ(r)

is divided out. Also shown is the mean squared displacement of a single probe scaled up by a factor of 100.

This agreement should hold as long as the tagged particle remains in the region where the local density is ρ(r).
Since the density changes over a length scale ∼ L and the average velocity of the tagged particle is ∼ 1/L, the region
of validity extends upto a time scale ∼ L2.

When a macroscopic number of STPs is introduced, they are phase separated and form essentially a single cluster.
The other phase is comprised of the medium, which continues to remain in local equilibrium with a similar density
gradient as in the single probe case. The probe cluster is found to diffuse slowly through the medium with a diffusion
constant D ∼ 1/L.

So far we have considered the effect of shock-tracking probes on systems described by the simple exclusion models
and the model with Ising interactions. Our broad conclusions from these studies remain valid even for systems with
an extended range for particle hops. We have studied the behavior of STPs in a driven diffusive system described
by the k-hop model, in which the particle hopping range is k [9]. Our simulation shows that in this case also, the
effect produced by the probe is long-ranged—there is a diverging correlation length in the low concentration limit of
STPs [23]. In the symmetric version of the k-hop model, a single STP gives rise to a macroscopic density gradient,
as before.

In this paper, we have discussed the effect of shock-tracking probes on one dimensional equilibrium and nonequilib-
rium systems. An equilibrium system is found to be affected very strongly by the presence of even a single probe—a
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density gradient is generated that extends over the entire system. For probes in nonequilibrium systems, the effect is
less drastic: the shock around a single probe decays as a slow power law. With a macroscopic number of probes, this
decay extends upto the correlation length, which in turn diverges in the low probe-density limit. The question arises:
How general are these conclusions—do they remain valid even with other nonequilibrium probes in one-dimensional
systems? We have studied another example which falls into this general framework, namely directed probes driven
by an external field. In an ASEP, such a probe behaves like a tagged particle, but when immersed in a symmetric
exclusion process, it is again found to give rise to a macroscopic density gradient [23]. It would be interesting to have
a general criterion which sets conditions for the occurrence of such phenomena.
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