39 research outputs found

    Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media

    Get PDF
    BACKGROUND: Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minimal information on optical property measurement approaches that are appropriate for in vivo measurements in highly absorbing and scattering tissues. We describe a novel fiberoptic-based reflectance system for measurement of optical properties in highly attenuating turbid media and provide an extensive in vitro evaluation of its accuracy. The influence of collecting reflectance at the illumination fiber on estimation accuracy is also investigated. METHODS: A neural network algorithm and reflectance distributions from Monte Carlo simulations were used to generate predictive models based on the two geometries. Absolute measurements of diffuse reflectance were enabled through calibration of the reflectance system. Spatially-resolved reflectance distributions were measured in tissue phantoms at 405 nm for absorption coefficients (μ(a)) from 1 to 25 cm(-1 )and reduced scattering coefficients ([Formula: see text]) from 5 to 25 cm(-1). These data and predictive models were used to estimate the optical properties of tissue-simulating phantoms. RESULTS: By comparing predicted and known optical properties, the average errors for μ(a )and [Formula: see text] were found to be 3.0% and 4.6%, respectively, for a linear probe approach. When bifurcated probe data was included and samples with μ(a )values less than 5 cm(-1 )were excluded, predictive errors for μ(a )and [Formula: see text] were further reduced to 1.8% and 3.5%. CONCLUSION: Improvements in system design have led to significant reductions in optical property estimation error. While the incorporation of a bifurcated illumination fiber shows promise for improving the accuracy of [Formula: see text] estimates, further study of this approach is needed to elucidate the source of discrepancies between measurements and simulation results at low μ(a )values

    Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices?

    Get PDF
    Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002

    Human health depends on soil nutrients

    No full text
    The composition of soils influences the composition of crops, in turn influencing the quality of food, its contribution to human nutrition, and ultimately, human health. Agricultural management options for improvement include diversifying cropping systems and correcting deficiencies through fertilization.John Duxbury, Graham Lyons and Tom Bruulsem

    Nitrogen Contribution to Succeeding Corn from Alfalfa and Red Clover 1

    No full text
    corecore