1,418 research outputs found
New Light Species and the CMB
We consider the effects of new light species on the Cosmic Microwave
Background. In the massless limit, these effects can be parameterized in terms
of a single number, the relativistic degrees of freedom. We perform a thorough
survey of natural, minimal models containing new light species and numerically
calculate the precise contribution of each of these models to this number in
the framework of effective field theory. After reviewing the relevant details
of early universe thermodynamics, we provide a map between the parameters of
any particular theory and the predicted effective number of degrees of freedom.
We then use this map to interpret the recent results from the Cosmic Microwave
Background survey done by the Planck satellite. Using this data, we present new
constraints on the parameter space of several models containing new light
species. Future measurements of the Cosmic Microwave Background can be used
with this map to further constrain the parameter space of all such models.Comment: 38 pages plus appendices and references; 10 figures and 1 table;
references added, discussion of anapole moments added; supernovae cooling
bounds added, discussion of models condense
Sandy Feet
Sgt. Brady is a former armed forces member with a transtibial amputation. He walks on sand frequently for work and leisure, but experiences severe pain and inconvenience because his current prosthesis is not meant for use on sand. Sand Foot V2 is a prosthesis that allows Sgt. Brady to walk on sand for long periods of time without issue
Identifying boosted new physics with non-isolated leptons
We demonstrate the utility of leptons which fail standard isolation criteria
in searches for new physics at the LHC. Such leptons can arise in any event
containing a highly boosted particle which decays to both leptons and quarks.
We begin by considering multiple extensions to the Standard Model which
primarily lead to events with non-isolated leptons and are therefore missed by
current search strategies. We emphasize the failure of standard isolation
variables to adequately discriminate between signal and SM background for any
value of the isolation cuts. We then introduce a new approach which makes use
of jet substructure techniques to distinguish a broad range of signals from QCD
events. We proceed with a simulated, proof-of-principle search for R-parity
violating supersymmetry to demonstrate both the experimental reach possible
with the use of non-isolated leptons and the utility of new substructure
variables over existing techniquesComment: 15 pages plus references, 11 figures; references adde
Synchronization of coupled single-electron circuits based on nanoparticles and tunneling junctions
We explore theoretically the synchronization properties of a device composed of coupled single-electron circuits whose building blocks are nanoparticles interconnected with tunneling junctions. Elementary nanoscillators can be achieved by a single-electron tunneling cell where the relaxation oscillation is induced by the tunneling. We develop a model to describe the synchronization of the nanoscillators and present sample calculations to demonstrate that the idea is feasible and could readily find applications. Instead of considering a particular system, we analyze the general properties of the device making use of an ideal model that emphasizes the essential characteristics of the concept. We define an order parameter for the system as a whole and demonstrate phase synchronization for sufficiently high values of the coupling [email protected] [email protected] [email protected]
SUSY Stops at a Bump
We discuss collider signatures of the "natural supersymmetry" scenario with
baryon-number violating R-parity violation. We argue that this is one of the
few remaining viable incarnations of weak scale supersymmetry consistent with
full electroweak naturalness. We show that this intriguing and challenging
scenario contains distinctive LHC signals, resonances of hard jets in
conjunction with relatively soft leptons and missing energy, which are easily
overlooked by existing LHC searches. We propose novel strategies for
distinguishing these signals above background, and estimate their potential
reach at the 8 TeV LHC. We show that other multi-lepton signals of this
scenario can be seen by currently existing searches with increased statistics,
but these opportunities are more spectrum-dependent.Comment: 23 pages, 7 figures, 3 tables. V2: spectrum discussion corrected,
most of the changes are in Sec. 2. Benchmarks, analysis and conclusions
unchanged. References adde
T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium.
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses
BLUF Domain Function Does Not Require a Metastable Radical Intermediate State
BLUF
(blue light using flavin) domain proteins are an important
family of blue light-sensing proteins which control a wide variety
of functions in cells. The primary light-activated step in the BLUF
domain is not yet established. A number of experimental and theoretical
studies points to a role for photoinduced electron transfer (PET)
between a highly conserved tyrosine and the flavin chromophore to
form a radical intermediate state. Here we investigate the role of
PET in three different BLUF proteins, using ultrafast broadband transient
infrared spectroscopy. We characterize and identify infrared active
marker modes for excited and ground state species and use them to
record photochemical dynamics in the proteins. We also generate mutants
which unambiguously show PET and, through isotope labeling of the
protein and the chromophore, are able to assign modes characteristic
of both flavin and protein radical states. We find that these radical
intermediates are not observed in two of the three BLUF domains studied,
casting doubt on the importance of the formation of a population of
radical intermediates in the BLUF photocycle. Further, unnatural amino
acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines,
thus modifying the driving force for the proposed electron transfer
reaction; the rate changes observed are also not consistent with a
PET mechanism. Thus, while intermediates of PET reactions can be observed
in BLUF proteins they are not correlated with photoactivity, suggesting
that radical intermediates are not central to their operation. Alternative
nonradical pathways including a keto–enol tautomerization induced
by electronic excitation of the flavin ring are considered
- …