26 research outputs found

    Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur-oxidizing enzyme system

    Get PDF
    The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be widespread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosulfate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the comprehensive genetic and genomic analyses presented in the present study identified the soxB gene in 121 phylogenetically and physiologically divergent SOB, including several species for which thiosulfate utilization has not been reported yet. In first support of the previously postulated general involvement of components of the Sox enzyme complex in the thiosulfate oxidation process of sulfur-storing SOB, the soxB gene was detected in all investigated photo- and chemotrophic species that form sulfur globules during thiosulfate oxidation (Chromatiaceae, Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix, Beggiatoa, Thiobacillus, invertebrate symbionts and free-living relatives). The SoxB phylogeny reflected the major 16S rRNA gene-based phylogenetic lineages of the investigated SOB, although topological discrepancies indicated several events of lateral soxB gene transfer among the SOB, e.g. its independent acquisition by the anaerobic anoxygenic phototrophic lineages from different chemotrophic donor lineages. A putative scenario for the proteobacterial origin and evolution of the Sox enzyme system in SOB is presented considering the phylogenetic, genomic (sox gene cluster composition) and geochemical data

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    The biological sulfur cycle

    No full text

    Trigger factor interacts with the signal peptide of nascent Tat substrates but does not play a critical role in tat-mediated export.

    No full text
    Twin-arginine translocation (Tat)-mediated protein transport across the bacterial cytoplasmic membrane occurs only after synthesis and folding of the substrate protein that contains a signal peptide with a characteristic twin-arginine motif. This implies that premature contact between the Tat signal peptide and the Tat translocon in the membrane must be prevented. We used site-specific photo-crosslinking to demonstrate that the signal peptide of nascent Tat proteins is in close proximity to the chaperone and peptidyl-prolyl isomerase trigger factor (TF). The contact with TF was strictly dependent on the context of the translating ribosome, started early in biogenesis when the nascent chain left the ribosome near L23, and persisted until the chain reached its full length. Despite this exclusive and prolonged contact, depletion or overexpression of TF had little effect on the kinetics and efficiency of the Tat export process

    Does carbonate-associated sulphate record nutrition in lucinid and thyasirid bivalve shells from modern hydrocarbon seeps?

    No full text
    We test whether chemosymbiotic bivalves with sulphide-oxidizing bacteria record their nutritional strategy in the sulphur isotope composition of the carbonate-associated sulphate (CAS) in their shells, as a possible indicator of thiotrophic chemosymbiosis in the fossil record. The hypothesis rests on the possible incorporation of ³⁴S-depleted sulphate resulting from sulphide oxidation in sufficient quantity to affect the intrashell sulphate-sulphur isotope mass balance and hence the isotopic composition of sulphate, which is incorporated into carbonate with little or no fractionation. We analysed shell material of lucinid (Lucinoma asapheus) and thyasirid (Thyasira vulcolutre) bivalves from active mud volcanoes in the Gulf of Cadiz. Our results show that the CAS-δ³⁴S values of the bivalve shells do not reflect the variety of sulphur sources present at hydrocarbon seeps, but instead only record seawater sulphate values. Low δ³⁴S values were, however, measured in the animals’ soft tissues and shell organic matter (SOM), both displaying a strong influence of the depleted sulphide used as nutrition by the chemosynthethic bacteria. Given its potential for long-term preservation, SOM may therefore represent a more promising record of chemosymbiosis in the fossil record, while CAS from seep bivalves can be used to reconstruct local seawater sulphate
    corecore