191 research outputs found

    Wide angle seismic recordings from the 2002 Georgia Basin Geohazards Initiative, Northwestern Washington and British Columbia

    Get PDF
    This report describes the acquisition and processing of shallow-crustal wide-angle seismicreflection and refraction data obtained during a collaborative study in the Georgia Strait, western Washington and southwestern British Columbia. The study, the 2002 Georgia Strait Geohazards Initiative, was conducted in May 2002 by the Pacific Geoscience Centre, the U.S. Geological Survey, and the University of Victoria. The wide-angle recordings were designed to image shallow crustal faults and Cenozoic sedimentary basins crossing the International Border in southern Georgia basin and to add to existing wide-angle recordings there made during the 1998 SHIPS experiment. We recorded, at wide-angle, 800 km of shallow penetration multichannel seismic-reflection profiles acquired by the Canadian Coast Guard Ship (CCGS) Tully using an air gun with a volume of 1.967 liters (120 cu. in.). Prior to this reflection survey, we deployed 48 Refteks onshore to record the airgun signals at wide offsets. Three components of an oriented, 4.5 Hz seismometer were digitally recorded at all stations. Nearly 160,300 individual air gun shots were recorded along 180 short seismic reflection lines. In this report, we illustrate the wide-angle profiles acquired using the CCGS Tully, describe the land recording of the air gun signals, and summarize the processing of the land recorder data into common-receiver gathers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but the experiment provided useful data from 42 of the 48 stations deployed. Three-fourths of all stations yielded useful first-arrivals to source-receiver offsets beyond 10 km: the average maximum source-receiver offset for first arrivals was 17 km. Six stations yielded no useful data and useful firstarrivals were limited to offsets less than 10 km at five stations. We separately archived our recordings of 86 local and regional earthquakes ranging in magnitude from 0.2 to 4.3 and 16 teleseisms ranging in magnitude 5.5 to 6.5

    Shear wave velocity prediction using seismic attributes and well log data

    Get PDF
    Formation’s properties can be estimated indirectly using joint analysis of compressional and shear wave velocities. Shear wave data isnot usually acquired during well logging, which is most likely for costsaving purposes. Even if shear data is available, the logging programs provide only sparsely sampled one-dimensional measurements: this informationis inadequate to estimate reservoir rock properties. Thus, if the shear wave data can be obtained using seismic methods, the results can be used across the field to estimate reservoir properties. The aim of this paper is to use seismic attributes for prediction of shear wave velocity in a field located in southern part of Iran. Independent component analysis(ICA) was used to select the most relevant attributes to shear velocity data. Considering the nonlinear relationship between seismic attributes and shear wave velocity, multi-layer feed forward neural network was used for prediction of shear wave velocity and promising results were presented

    Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in the magmatic system of Soufrière Hills Volcano

    Get PDF
    Strain dilatometers have been operated on the volcanic island of Montserrat (West Indies) for more than a decade and have proven to be a powerful technique to approach short-term dynamics in the deformational field in response to pressure changes in the magmatic system of the andesitic dome-building Soufrière Hills Volcano (SHV). We here demonstrate that magmatic activity in each of the different segments of the SHV magmatic system (shallow dyke-conduit, upper and lower magma chambers) generates a characteristic strain pattern that allows the identification of operating sources in the plumbing system based on a simple scheme of amplitude ratios. We use this method to evaluate strain data from selected Vulcanian explosions and gas emission events that occurred at SHV between 2003 and 2012. Our results show that the events were initiated by a short phase of contraction of either one or both magma chambers and a simultaneous inflation of the shallow feeder system. The initial phase of the events usually lasted only tens to hundreds of seconds before the explosion/gas emission started and the system recovered. The short duration of this process points at rapid transport of fluids rather than magma ascent to generate the pressure changes. We suggest the propagation of tensile hydraulic fractures as viable mechanism to provide a pathway for fluid migration in the magmatic system at the observed time scale. Fluid mobilization was initiated by a sudden destabilization of large pockets of already segregated fluid in the magma chambers. Our study demonstrates that geodetic observables can provide unprecedented insights into complex dynamic processes within a magmatic system commonly assessed by theoretical modeling and petrologic observations. Key Points Strain data analysis from explosions/degassing events at Soufriere Hills Volcano Pressure release deep within the magmatic system sec-min prior to events Rapid gas rise from magma reservoir to surface via tensile hydraulic fractures © 2014. American Geophysical Union. All Rights Reserved

    Derivation of consistent hard rock (1000<Vs<3000 m/s) GMPEs from surface and down-hole recordings: Analysis of KiK-net data

    Get PDF
    A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz

    Community-developed checklists for publishing images and image analysis

    Get PDF
    Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality of microscopy data is in publications.Comment: 28 pages, 8 Figures, 3 Supplmentary Figures, Manuscript, Essential recommendations for publication of microscopy image dat

    Hierarchical Models in the Brain

    Get PDF
    This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain
    • …
    corecore