58 research outputs found

    The biosynthesis of pyoverdines

    Get PDF
    Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions

    PvdM of fluorescent pseudomonads is required for the oxidation of ferribactin by PvdP in periplasmic pyoverdine maturation

    Get PDF
    Fluorescent pseudomonads such as Pseudomonas aeruginosa or Pseudomonas fluorescens produce pyoverdine siderophores that ensure iron-supply in iron-limited environments. After its synthesis in the cytoplasm, the nonfluorescent pyoverdine precursor ferribactin is exported into the periplasm, where the enzymes PvdQ, PvdP, PvdO, PvdN, and PtaA are responsible for fluorophore maturation and tailoring steps. While the roles of all these enzymes are clear, little is known about the role of PvdM, a human renal dipeptidase–related protein that is predicted to be periplasmic and that is essential for pyoverdine biogenesis. Here, we reveal the subcellular localization and functional role of PvdM. Using the model organism P. fluorescens, we show that PvdM is anchored to the periplasmic side of the cytoplasmic membrane, where it is indispensable for the activity of the tyrosinase PvdP. While PvdM does not share the metallopeptidase function of renal dipeptidase, it still has the corresponding peptide-binding site. The substrate of PvdP, deacylated ferribactin, is secreted by a ΔpvdM mutant strain, indicating that PvdM prevents loss of this periplasmic biosynthesis intermediate into the medium by ensuring the efficient transfer of ferribactin to PvdP in vivo. We propose that PvdM belongs to a new dipeptidase-related protein subfamily with inactivated Zn2+ coordination sites, members of which are usually genetically linked to TonB-dependent uptake systems and often associated with periplasmic FAD-dependent oxidoreductases related to D-amino acid oxidases. We suggest that these proteins are necessary for selective binding, exposure, or transfer of specific D- and L-amino acid–containing peptides and other periplasmic biomolecules in manifold pathways

    PspF-binding domain PspA1-144 and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins.

    Get PDF
    Phage shock protein A (PspA) belongs to the highy conserved PspA/IM30 family and is a key component of the stress inducible Psp system in Escherichia coli. One of its central roles is the regulatory interaction with the transcriptional activator of this system, the σ54 enhancer binding protein PspF, a member of the AAA+ protein family. The PspA/F regulatory system has been intensively studied and serves as a paradigm for AAA+ enzyme regulation by trans-acting factors. However, the molecular mechanism of how exactly PspA controls the activity of PspF and hence σ54-dependent expression of the psp genes is still unclear. To approach this question, we identified the minimal PspF-interacting domain of PspA, solved its structure, determined its affinity to PspF and the dissociation kinetics, identified residues that are potentially important for PspF regulation and analyzed effects of their mutation on PspF in vivo and in vitro. Our data indicate that several characteristics of AAA+ regulation in the PspA·F complex resemble those of the AAA+ unfoldase ClpB, with both proteins being regulated by a structurally highly conserved coiled-coil domain. The convergent evolution of both regulatory domains points to a general mechanism to control AAA+ activity for divergent physiological tasks via coiled-coil domains

    Transport of Folded Proteins by the Tat System

    Get PDF
    The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations

    Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane:Distinct translocases and mechanisms

    Get PDF
    AbstractIn bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different

    PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescensDihydropyoverdine oxidation by PvdO

    No full text
    Pyoverdines are important siderophores that guarantee iron supply to important pathogenic and non-pathogenic pseudomonads in host habitats. A key characteristic of all pyoverdines is the fluorescent dihydroxyquinoline group that contributes two ligands to the iron complexes. Pyoverdines are derived from the non-ribosomally synthesized peptide ferribactin, and their fluorophore is generated by periplasmic oxidation and cyclization reactions of d-tyrosine and l-diaminobutyric acid. The formation of the fluorophore is known to be driven by the periplasmic tyrosinase PvdP. Here we report that the putative periplasmic oxidoreductase PvdO of Pseudomonas fluorescens A506 is required for the final oxidation of dihydropyoverdine to pyoverdine, which completes the fluorophore. The pvdO deletion mutant accumulates dihydropyoverdine, and this phenotype is fully complemented by recombinant PvdO. The autoxidation of dihydropyoverdine at alkaline pH and the presence of high copper concentrations can mask this phenotype. Mutagenesis of conserved residues with potential catalytic function identified Glu-260 as an essential residue whose mutation abolished function without affecting stability or transport. Glu-260 of PvdO is at the exact position of the active-site cysteine in the structurally related formylglycine-generating enzyme. Evolution thus used the same protein fold for two distinct functionalities. As purified PvdO was inactive, additional factors are required for catalysis
    corecore