1,044 research outputs found

    CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM

    Get PDF
    Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream substrates, mineral deposits can also form on benthic invertebrates. However, little is known about which taxa may be prone to calcium carbonate encrustation and which life history traits may make taxa more susceptible to becoming encrusted. Here we report the presence of calcium carbonate deposits on live insects collected from a montane stream in the Madrean Sky Islands (Huachuca Mountains) of Arizona between 2011 and 2013. Life history differences are examined between taxa with and without travertine deposits. Thirteen genera of aquatic insects were found with calcium carbonate deposits on the exoskeleton as well as 22 other genera, also encountered in the study stream, that have not previously been found with such deposits. Taxa with calcium carbonate encrustation had significantly longer-lived aquatic stages than those without encrustation. Furthermore, encrustation presence did not differ among aerial dispersal modes. These results suggest that the extent of calcium carbonate deposition on aquatic insects is primarily related to the length of time they are in the stream. Since mineral encrustation may reduce predation pressure and mobility, changes in patterns of travertine formation in these systems may have profound effects on ecological interactions. Los ecosistemas dulceacuícolas ubicados en regiones de roca caliza pueden contener depósitos de carbonato de calcio en forma de travertino o tufa. Aunque muchos depósitos de travertino se encuentran como una capa o manto de cemento sobre el fondo del arroyo, los depósitos también pueden formarse sobre los invertebrados bentónicos. Sin embargo, poco se sabe acerca de las especies que son propensas a los depósitos de travertino, o acerca de las características de estas especies que influyen en tal proceso. En este manuscrito reportamos la presencia de depósitos de travertino en insectos vivos y recolectados en un arroyo montañoso en el Archipiélago Madrense de Arizona durante 2011–2013 y examinamos las diferencias en las historias de vida entre taxones con o sin depósitos de travertino. Encontramos trece géneros de insectos acuáticos con travertino sobre el exoesqueleto y vientedos géneros sin travertino. Los taxones con travertino tienen una fase acuática significativamente más larga que los taxones sin travertino. Además, la presencia de travertino no difirió entre especies con distintas maneras de dispersión aérea. Estos resultados sugieren que las diferencias en los depósitos de travertino en insectos acuáticos ocurren principalmente a causa de la duración del período de vida acuática del insecto. Aunque los depósitos de travertino pueden reducir la presión por depredación y movilidad, cambios en los patrones de formación de travertino en estos sistemas pueden afectar profundamente las interacciones ecológicas

    Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment

    Get PDF
    This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy

    Evolution of sex-dependent mtDNA transmission in freshwater mussels (Bivalvia: Unionida)

    Get PDF
    Doubly uniparental inheritance (DUI) describes a mode of mtDNA transmission widespread in gonochoric freshwater mussels (Bivalvia: Palaeoheterodonta: Unionida). In this system, both female- and male-transmitted mtDNAs, named F and M respectively, coexist in the same species. In unionids, DUI is strictly correlated to gonochorism and to the presence of the atypical open reading frames (ORFans) F-orf and M-orf, respectively inside F and M mtDNAs, which are hypothesized to participate in sex determination. However, DUI is not found in all three Unionida superfamilies (confirmed in Hyrioidea and Unionoidea but not in Etherioidea), raising the question of its origin in these bivalves. To reconstruct the co-evolution of DUI and of ORFans, we sequenced the mtDNAs of four unionids (two gonochoric with DUI, one gonochoric and one hermaphroditic without DUI) and of the related gonochoric species Neotrigonia margaritacea (Palaeoheterodonta: Trigoniida). Our analyses suggest that rearranged mtDNAs appeared early during unionid radiation, and that a duplicated and diverged atp8 gene evolved into the M-orf associated with the paternal transmission route in Hyrioidea and Unionoidea, but not in Etherioidea. We propose that novel mtDNA-encoded genes can deeply influence bivalve sex determining systems and the evolution of the mitogenomes in which they occur

    Seasonality and predictability shape temporal species diversity

    Get PDF
    Temporal environmental fluctuations, such as seasonality, exert strong controls on biodiversity. While the effects of seasonality are well known, the predictability of fluctuations across years may influence seasonality in ways that are less well understood. The ability of a habitat to support unique, non‐nested assemblages of species at different times of the year should depend on both seasonality (occurrence of events at specific periods of the year) and predictability (the reliability of event recurrence) of characteristic ecological conditions. Drawing on tools from wavelet analysis and information theory, we developed a framework for quantifying both seasonality and predictability of habitats, and applied this using global long‐term rainfall data. Our analysis predicted that temporal beta diversity should be maximized in highly predictable and highly seasonal climates, and that low degrees of seasonality, predictability, or both would lower diversity in characteristic ways. Using stream invertebrate communities as a case study, we demonstrated that temporal species diversity, as exhibited by community turnover, was determined by a balance between temporal environmental variability (seasonality) and the reliability of this variability (predictability). Communities in highly seasonal mediterranean environments exhibited strong oscillations in community structure, with turnover from one unique community type to another across seasons, whereas communities in aseasonal New Zealand environments fluctuated randomly. Understanding the influence of seasonal and other temporal scales of environmental oscillations on diversity is not complete without a clear understanding of their predictability, and our framework provides tools for examining these trends at a variety of temporal scales, seasonal and beyond. Given the uncertainty of future climates, seasonality and predictability are critical considerations for both basic science and management of ecosystems (e.g., dam operations, bioassessment) spanning gradients of climatic variability
    corecore