3,163 research outputs found

    On the equipartition of thermal and non-thermal energy in clusters of galaxies

    Full text link
    Clusters of galaxies are revealing themselves as powerful sources of non thermal radiation in a wide range of wavelengths. In order to account for these multifrequency observations equipartition of cosmic rays (CRs) with the thermal gas in clusters of galaxies is often invoked. This condition might suggest a dynamical role played by cosmic rays in the virialization of these large scale structures and is now testable through gamma ray observations. We show here, in the specific case of the Coma and Virgo clusters, for which upper limits on the gamma ray emission exist, that equipartition implies gamma ray fluxes that are close or even in excess of the EGRET limit, depending on the adopted model of CR injection. We use this bound to limit the validity of the equipartition condition. We also show that, contrary to what claimed in previous calculations, the equipartition assumption implies gamma ray fluxes in the TeV range which can be detectable even by currently operating gamma ray observatories if the injection cosmic ray spectrum is flatter than E2.4E^{-2.4}.Comment: 20 pages + 2 figures. To appear in the Astrophysical Journa

    The Effect of a Non-Thermal Tail on the Sunyaev-Zeldovich Effect in clusters of galaxies

    Full text link
    We study the spectral distortions of the cosmic microwave background radiation induced by the Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies when the target electrons have a modified Maxwell-Boltzmann distribution with a high-energy non-thermal tail. Bremsstrahlung radiation from this type of \\ electron distribution may explain the supra-thermal X-ray emission observed in some clusters such as the Coma cluster and A2199 and serve as an alternative to the classical but problematic inverse Compton scattering interpretation. We show that the SZ effect can be used as a powerful tool to probe the electron distribution in clusters of galaxies and discriminate among these different interpretations of the X-ray excess. The existence of a non-thermal tail can have important consequences for cluster based estimators of cosmological parameters.Comment: 14 pages, 3 figures, version to be published in ApJ. Let

    Finiteness of quantum gravity coupled with matter in three spacetime dimensions

    Full text link
    As it stands, quantum gravity coupled with matter in three spacetime dimensions is not finite. In this paper I show that an algorithmic procedure that makes it finite exists, under certain conditions. To achieve this result, gravity is coupled with an interacting conformal field theory C. The Newton constant and the marginal parameters of C are taken as independent couplings. The values of the other irrelevant couplings are determined iteratively in the loop- and energy-expansions, imposing that their beta functions vanish. The finiteness equations are solvable thanks to the following properties: the beta functions of the irrelevant couplings have a simple structure; the irrelevant terms made with the Riemann tensor can be reabsorbed by means of field redefinitions; the other irrelevant terms have, generically, non-vanishing anomalous dimensions. The perturbative expansion is governed by an effective Planck mass that takes care of the interactions in the matter sector. As an example, I study gravity coupled with Chern-Simons U(1) gauge theory with massless fermions, solve the finiteness equations and determine the four-fermion couplings to two-loop order. The construction of this paper does not immediately apply to four-dimensional quantum gravity.Comment: 21 pages, 3 figures; typos corrected, NPB versio

    Pierre Auger Data, Photons, and Top-Down Cosmic Ray Models

    Full text link
    We consider the ultra-high energy cosmic ray (UHECR) spectrum as measured by the Pierre Auger Observatory. Top-down models for the origin of UHECRs predict an increasing photon component at energies above about 1019.710^{19.7}eV. Here we present a simple prescription to compare the Auger data with a prediction assuming a pure proton component or a prediction assuming a changing primary component appropriate for a top-down model. We find that the UHECR spectrum predicted in top-down models is a good fit to the Auger data. Eventually, Auger will measure a composition-independent spectrum and will be capable of either confirming or excluding the quantity of photons predicted in top-down models.Comment: 8 pages, 3 figure

    Reduced neural sensitivity to social stimuli in infants at risk for autism

    Get PDF
    In the hope of discovering early markers of autism, attention has recently turned to the study of infants at risk owing to being the younger siblings of children with autism. Because the condition is highly heritable, later-born siblings of diagnosed children are at substantially higher risk for developing autism or the broader autism phenotype than the general population. Currently, there are no strong predictors of autism in early infancy and diagnosis is not reliable until around 3 years of age. Because indicators of brain functioning may be sensitive predictors, and atypical social interactions are characteristic of the syndrome, we examined whether temporal lobe specialization for processing visual and auditory social stimuli during infancy differs in infants at risk. In a functional near-infrared spectroscopy study, infants aged 4–6 months at risk for autism showed less selective neural responses to social stimuli (auditory and visual) than low-risk controls. These group differences could not be attributed to overall levels of attention, developmental stage or chronological age. Our results provide the first demonstration of specific differences in localizable brain function within the first 6 months of life in a group of infants at risk for autism. Further, these differences closely resemble known patterns of neural atypicality in children and adults with autism. Future work will determine whether these differences in infant neural responses to social stimuli predict either later autism or the broader autism phenotype frequently seen in unaffected family members

    Identifying Nearby UHECR Accelerators using UHE (and VHE) Photons

    Full text link
    Ultra-high energy photons (UHE, E > 10^19 eV) are inevitably produced during the propagation of 10^20 eV protons in extragalactic space. Their short interaction lengths (<20 Mpc) at these energies, combined with the impressive sensitivity of the Pierre Auger Observatory detector to these particles, makes them an ideal probe of nearby ultra-high-energy cosmic ray (UHECR) sources. We here discuss the particular case of photons from a single nearby (within 30 Mpc) source in light of the possibility that such an object might be responsible for several of the UHECR events published by the Auger collaboration. We demonstrate that the photon signal accompanying a cluster of a few > 6x10^19 eV UHECRs from such a source should be detectable by Auger in the near future. The detection of these photons would also be a signature of a light composition of the UHECRs from the nearby source.Comment: 4 pages, 2 figures, accepted for publication in PR

    EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions III. The flux-limited sample

    Get PDF
    Theoretical simulations and observations at different angular resolutions have shown that magnetic fields have a central role in massive star formation. Like in low-mass star formation, the magnetic field in massive young stellar objects can either be oriented along the outflow axis or randomly. Measuring the magnetic field at milliarcsecond resolution (10-100 au) around a substantial number of massive young stellar objects permits determining with a high statistical significance whether the direction of the magnetic field is correlated with the orientation of the outflow axis or not. In late 2012, we started a large VLBI campaign with the European VLBI Network to measure the linearly and circularly polarized emission of 6.7 GHz methanol masers around a sample of massive star-forming regions. This paper focuses on the first seven observed sources, G24.78+0.08, G25.65+1.05, G29.86-0.04, G35.03+0.35, G37.43+1.51, G174.20-0.08, and G213.70-12.6. For all these sources, molecular outflows have been detected in the past. We detected a total of 176 methanol masing cloudlets toward the seven massive star-forming regions, 19% of which show linearly polarized emission. The methanol masers around the massive young stellar object MM1 in G174.20-0.08 show neither linearly nor circularly polarized emission. The linear polarization vectors are well ordered in all the other massive young stellar objects. We measured significant Zeeman splitting toward both A1 and A2 in G24.78+0.08, and toward G29.86-0.04 and G213.70-12.6. By considering all the 19 massive young stellar objects reported in the literature for which both the orientation of the magnetic field at milliarcsecond resolution and the orientation of outflow axes are known, we find evidence that the magnetic field (on scales 10-100 au) is preferentially oriented along the outflow axes.Comment: 17 pages, 10 figures, 9 tables, accepted by Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1306.633

    Comparison of Different Methods for Nonlinear Diffusive Shock Acceleration

    Full text link
    We provide a both qualitative and quantitative comparison among different approaches aimed to solve the problem of non-linear diffusive acceleration of particles at shocks. In particular, we show that state-of-the-art models (numerical, Monte Carlo and semi-analytical), even if based on different physical assumptions and implementations, for typical environmental parameters lead to very consistent results in terms of shock hydrodynamics, cosmic ray spectrum and also escaping flux spectrum and anisotropy. Strong points and limits of each approach are also discussed, as a function of the problem one wants to study.Comment: 26 pages, 4 figures, published version (references updated

    Axiflavon-Higgs Unification

    Get PDF
    In this talk, a unified model of scalar particles that addresses the flavour hierarchies, solves the strong CP problem, delivers a dark matter candidate, and radiatively triggers electroweak symmetry breaking is discussed. The recently proposed axiflavon is embedded together with an (elementary) Goldstone Higgs-sector in a single multiplet (and thereby also a model of flavour and strong CP conservation for the latter is provided). Bounds on the axion decay constant follow from requiring a SM-like Higgs potential at low energies and are confronted with constraints from flavour physics and astrophysics. In the minimal implementation, the axion decay constant is restricted to fa(10111012)f_a \approx (10^{11}-10^{12}) GeV, while adding right-handed neutrinos allows for a heavy-axion model at lower energies, down to fa10f_a \sim 10 TeV
    corecore