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In this talk, a unified model of scalar particles that addresses the flavour hierarchies, solves
the strong CP problem, delivers a dark matter candidate, and radiatively triggers electroweak
symmetry breaking is discussed. The recently proposed axiflavon is embedded together with
an (elementary) Goldstone Higgs-sector in a single multiplet (and thereby also a model of
flavour and strong CP conservation for the latter is provided). Bounds on the axion decay
constant follow from requiring a SM-like Higgs potential at low energies and are confronted
with constraints from flavour physics and astrophysics. In the minimal implementation, the
axion decay constant is restricted to fa ≈ (1011 − 1012) GeV, while adding right-handed
neutrinos allows for a heavy-axion model at lower energies, down to fa ∼ 10 TeV.

1 Introduction

Although being very successful in describing nature in many aspects, the Standard Model (SM)
of particle physics lacks explanations for several experimental facts, such as the significant
abundance of Dark Matter, the large hierarchies in fermion masses and mixings, and the excellent
conservation of CP symmetry in strong interactions, the latter being in tension with in principle
sizable sources of CP violation in the QCD/SM Lagrangian. Beyond that, although the SM
allows to parameterize electroweak symmetry breaking (EWSB) via the Higgs mechanism, the
origin of the Higgs potential remains unexplained.

While separate solutions to all these problems are well known in the literature, here we
entertain a unified model, simultaneously addressing all these problems at a time via a single
scalar multiplet. To this end we show that it is possible to identify a radial component of this
multiplet with a Froggatt-Nielsen-like flavon, whose vacuum expectation value (vev) now breaks
an appropriate enhanced global symmetry G – including a horizontal U(1)H flavour symmetry
– down to H 6⊃ U(1)H. In turn, the corresponding (pseudo) Goldstone bosons of the G/H coset
can be identified with the axion and a (Goldstone-)Higgs doublet, as will be discussed in detail
below. This leads to a unified description of symmetry breaking via a single fundamental source
and unites the so-far separate scalar particles that solve the issues of massive EW gauge bosons
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(via radiative EWSB), of strong CP conservation, and of fermion mass + mixing hierarchies in
one multiplet.

We start discussing our setup by reviewing briefly the Froggatt–Nielsen (FN) mechanism 1.
This allows to address the fermion hierarchies by charging the chiral SM fermions differently
under a U(1)H flavour symmetry. In turn, they are only allowed to interact with each other via
a chain of new vector-like fermions, ξj (the FN messengers), connected via insertions of a new
complex scalar field Φ, the flavon, carrying away the U(1)H-charge difference. After acquiring
a vev, 〈Φ〉 6= 0, the scalar spontaneously breaks the U(1)H symmetry, generating hierarchical
Yukawa couplings, suppressed by powers of its vev over the mass of the FN messengers, which
are assumed to be somewhat heavier and thus integrated out in the IR theory, leaving us with
effective interactions between the SM-fermion chiralities (and the Higgs boson).

In fact, it has been shown already2,3 that the angular component of Φ – the axiflavon – which
plays no vital role in the original FN mechanism, can be identified with the QCD axion 4,5,6,
thereby addressing two more issues of the SM, namely the strong CP problem and the DM
puzzle, in a unified scenario. This increases the predictivity of the axion solution, since the
couplings of the latter are now dictated by the flavour structure, leading to interesting signals
in flavour experiments 2. Subsequently, it was shown that a further unification with the Higgs
sector can be achieved 7, as sketched above, increasing even more the predictivity of the scenario
– making this axion-like solution to the strong CP problem fully testable in the near future, while
adding a dynamics to EWSB. Before discussing this framework in detail in the following, we
finally add that, from a different perspective, it can also be seen as naturally including a model
of flavour (and strong CP conservation) in the recently proposed elementary-Goldstone-Higgs
scenario 8,9, furnishing a compelling renormalizable alternative to partial compositeness 10.

2 Explicit Model and Mass Hierarchies

We embed the Higgs, the axion, and the flavon in a single multiplet, Σ, transforming under the
enlarged symmetry group G ⊃ U(1)H×GEW, with GEW ≡ SU(2)L×U(1)Y . Since the Higgs mass
shall be much smaller than the U(1)H breaking scale, setting the flavon mass, we envisage both
the axion and the Higgs boson components to correspond to pseudo-Nambu–Goldstone bosons
(pNGBs), providing an example of axion-Higgs unification 11 and allowing for dynamical EWSB
via the Coleman–Weinberg potential for the emerging Goldstone Higgs. In fact, the vanishing
of the quartic Higgs coupling in the SM around 1010 GeV, just about at the natural scale for
axiflavon dark matter, might hint both to a Goldstone nature of the Higgs and to a connection
between the latter and the axion.

We thus formulate a linear sigma model for the field Σ at the scale f , featuring Yukawa
interactions with the FN messengers and the SM fields, with the (radial) flavon component

developing a vev breaking G 〈Σ〉−−→ H ⊃ GEW, while the axion and the Higgs reside in the G/H
coset. A particular simple choice for a viable breaking pattern is 7

[SO(5)×U(1)H]×U(1)X → SO(4)×U(1)X , (1)

where the U(1)X factor is introduced to reproduce the fermion hypercharges as Y = T3 + X.
The breaking above is obtained via a Σ field living in the fundamental representation, 5, of
SO(5) and with U(1)H flavour charge HΣ = 1, featuring a potential

V (Σ,Σ∗) = λ1

(
Σ†Σ

)2
− λ2 ΣTΣ Σ†Σ∗ − µ2Σ†Σ , (2)

which is bounded from below if λ1 > λ2 > 0. The EW gauge group is embedded in SO(5) via
the usual SU(2)L × SU(2)R

∼= SO(4) generators 7 T aL,R
ij , a= 1, .., 3, i, j= 1, .., 4. The SO(4)-

preserving minimum is then given by 〈Σ〉 = (0, 0, 0, 0, f/
√

2), with µ2 = (λ1 − λ2)f2.



After the breaking of Eq. (1), the scalar sector can be parametrized as

Σ = ei(
√

2hâT̂
â+a)/f

(
H̃

(f + σ)/
√

2

)
, (3)

with the broken generators

T̂ âij = − i√
2

[
δâi δ

5
j − δâj δ5

i

]
, (4)

where â= 1, .., 4, and i, j= 1, .., 5. The physical states contained in the radial Σ-components are
a heavy Higgs doublet, H̃, with mass m2

H̃
= 2λ2f

2, and a heavy flavon fluctuation σ around the

vev f , with mass m2
σ = 2(λ1−λ2)f2, while the SM-like Higgs doublet, hâ, and the axion, a, are

instead pNGBs.
We assume that the explicit breaking of G originates from the SM sector only, namely from

the QCD anomaly, EW gauging, and via the SM fermions not filling full G representations,
while the FN messengers always enter as complete representations. The latter are denoted by
ξj , where the subscript refers to the U(1)H charge, Hξj = j. They transform in the spinorial
representation, 4, of SO(5) (which allows for a very minimal FN messenger sector 7) and are
non-chiral under SO(5) × U(1)H. The SM fermions, qiL, uiR, and diR (with i = 1, 2, 3), come in
incomplete SO(5) representations in the spinorial

Ψi
qL

= ∆T
Lq

i
L, Ψi

uR
= ∆T

uu
i
R, Ψi

dR
= ∆T

d d
i
R, (5)

where the spurions, ∆L,u,d, feature background values

∆L =

(
1 0 0 0
0 1 0 0

)
, ∆u = (0, 0, 1, 0) , ∆d = (0, 0, 0, 1) , (6)

that parametrize the explicit SO(5) breaking (while U(1)H remains exact at the Lagrangian
level). The rows of these 2 × 4 matrices correspond to the fundamental of the weak gauge
group, while the columns label the components of 4 of SO(5). The U(1)H charge of each Ψi

f

is chosen such that the correct pattern of masses and mixings is reproduced – the larger the
charge difference between the left- and right-handed components of a given SM fermion, the
more suppressed is the resulting mass term, see below.

The corresponding Lagrangian includes renormalizable operators made out of Ψi
f , ξj , and Σ

allowed by symmetries and reads

−L =
∑
j

(
aj ξ̄j+1 Γα Σα ξj + h.c.

)
+mj ξ̄j ξj ,

+
∑

i,f=qL,uR,dR

zfi Ψ̄i
f Γα Σα ξ̄ + z̃fi ξ̄̄+2 Γα Σα Ψi

f + x Ψ̄3
qL

Γα Σα Ψ3
uR

+ h.c. ,
(7)

where Γa are the matrices defining the spinorial representation and the dimensionless coefficients
aj , z

f
i , z̄

f
i , x are all assumed to be of O(1). The first line contains the interactions of the FN

messengers with the Σ-field and their (vector-like) mass terms, while the second line consists of
Yukawa couplings involving the SM fermions and the FN messengers, with ̄ ≡ ̄(f, i) = Hf i−1
such that the terms are U(1)H invariant, where the last term allows for an unsuppressed top mass.

It is easy to see how this Lagrangian leads to FN-like mass hierarchies. For two chiral SM
fermions Ψi

qL
and Ψj

uR with a U(1)H charge difference of δij ≡ HqiL
− H

qjR
, a chain of at least

|δij | − 1 FN messengers ξi together with |δij | insertions of the Σ field is required to couple
them. After integrating out the ξi at the tree level (and suppressing O(1) factors), one finds the
corresponding effective leading order Lagrangian

−Leff ∼
1

m|δij |−1
Ψ̄j
uR

(ΓαΣα)|δij |Ψi
qL

+ h.c. , (8)
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Figure 1 – Left: Matching of the Higgs quartic coupling at the scale m in the SM (red band) with the prediction
of Eq. (11), considering a Yukawa coupling spread of δ = ±0.6 (light blue band), δ = ±0.3 (light gray band), and
δ = 0 (dashed black line). The intersection corresponds to the allowed range for m. Right: Same plot for the low
scale model, Eq.(19). See text for details.

which is non-vanishing for odd |δij |, as assumed in the following, while for even |δij | it is zero
due to Γ-matrix properties.

Below the symmetry-breaking scale and after integrating out the flavon and the second Higgs
doublet, the Σ-field can be written via the Goldstone parametrization in the unitary gauge as

Σ =
f√
2
eia/f (0, 0, sinh/f, 0, cosh/f)T , (9)

where h represents the Higgs field, and a is the axion. With this, we can single out the leading
contribution to the mass matrix

−Leff ⊃ mij q̄
i
Lu

j
R + h.c. , mij ∼

v√
2

(
f2

2m2

) |δij |−1

2

, (10)

where v ≡ f sin(〈h〉/f) is the EW scale. This exhibits a typical FN suppression in ε ≡
(
f2/2m2

)
,

which we identify with the Cabibbo angle, ε = sin θC ' 0.23, to reproduce the flavour hierarchies.

3 Higgs Potential and Constraints on the Axion Decay Constant

To calculate the Higgs potential, we consider the top sector, with a charge assignment Hq3
L

= 1,

Hu3
R

= 2, compatible with the top mass, and two (mass-degenerate) FN messengers, ξ0,1 coupled
to them. This allows for a minimal non-trivial chain of messengers and captures the leading
effect 7. The potential is then computed by matching at one loop the SM Coleman–Weinberg
potential, renormalized at the mass scale of the FN messengers m0 = m1 ≡ m, with the one
in the axiflavon-Higgs scenario, induced by explicit SO(5) breaking interactions involving the
fields mentioned above, see Ref. 7 for details. Requiring the quadratic term to reside at the
electroweak scale v (�f) allows us to make a prediction for the quartic coupling at the scale m
in terms of the top Yukawa, which turns out to be very small and negative. It reads 7

λ(m) = − Nc

2π2

f2

2m2
y6
t (m)(1 + δ)6 , (11)

where following the assumptions of the FN mechanism, all dimensionless coupling parameters
have been chosen to be of the order of the (O(1)) top Yukawa, which is explicitly realized by
replacing them with an average Yukawa coupling yt(m)(1 + δ), including a spread of |δ| < 1.

Since below the threshold of the FN messengers λ(m) is fully predicted via SM running,
Eq. (11) can be used to determine the scale m at which a successful matching is achieved. In
the left panel of Fig. 1 we show the SM running of λ(m) (including uncertainties) via the red
band and the RHS of Eq. (11) for δ = ±0.6 (light blue band), δ = ±0.3 (light gray band), and



δ = 0 (dashed black line). The matching is possible only for negative values of λ(m), which
selects 109 GeV . m . 1014 GeV. This translates, via f2/2m2 ' 0.23 and fa = f/N , with

N =
∑
i

2HΨiqL
−HΨiuR

−HΨidR
≈ 50, (12)

to a axion decay constant of
107 GeV . fa . 1012 GeV. (13)

This can be confronted with constraints due to the flavour-violating couplings of our axion b.
Limits from searches for K+ → π+a lead to fa & 7.5 × 1010 GeV at 90% C.L. 2, leaving a
relatively thin stripe of

fa ≈ (1011 − 1012) GeV , (14)

which will almost entirely be tested by the NA62 experiment, that just started operation 12.
The combined exclusions from requiring a consistent matching of the Higgs potential and
satisfying flavour bounds are visualized in Fig. 2 as red and blue shaded regions, respec-
tively, which shows the axion parameter space 2, where gaγγ is the axion-photon coupling and
ma = 5.7µeV (1012 GeV/fa)

13.
We finally discuss the impact of including right-handed (RH) neutrinos NR, which enter,

together with the left-handed lepton doublet lL as SO(5) spurions (see Eq. (5))

ΨL = ∆T
L lL, ΨN = ∆T

uNR. (15)

We assign flavour charge to ΨN such that the term

−LN =
1√
2
yN Ψ̄NΣ′CΨ̄T

N + h.c. = −1

2
yNf cos(h/f)N̄RCN̄T

R e
ıa/f + h.c. (16)

is allowed, leading to Majorana and Dirac masses (the latter via a FN-chain)

m2
NR

(h) = y2
Nf

2 cos2(h/f) , mD ∼ mtε
|δν |−1

2 , (17)

where δν = HlL −HNR
. The light neutrino mass is then given by

mν ∼ mtε
|δν |−1 mt

mNR

, (18)

which shows a double suppression, originating from the type-I seesaw and from the FN mech-
anism. Including the impact of three almost degenerate RH neutrinos, described by Eq. (16)
with a typical coupling parametrized as yN = (1 + δ)yt, on the Higgs potential we arrive now
(similar as before) at a positive

λ(m) =
3

8π2
log

(
1

2y2
t (m)(1 + δ)2ε

)
(1 + δ)4y4

t (m). (19)

In the right panel of Fig. 1 we confront the SM running of λ(m) in red and the RHS of
Eq. (19) for δ = ±0.6 (light blue band), δ = ±0.3 (light gray band) and δ = 0 (dashed black
line). The matching is now possible for smaller values of m with respect to the case without RH
neutrinos, leading to

6 TeV . fa . 2× 106 TeV . (20)

Although such low values of fa are excluded for the usual QCD axion, by disentangling the axion
mass and decay constant, low-fa models can become viable 14,15. Supernova cooling and flavour
constraints can then be avoided by pushing the axion mass to the GeV or TeV scale. While this
axion cannot be a dark matter candidate anymore, it still solves the strong CP problem and the
RH neutrinos can add a link to the matter-antimatter asymmetry via leptogenesis 16.

bNote that, for fixed fa, the axion couplings to fermions and to photons remain basically unchanged compared
to the original axiflavon model 2 (becoming exactly equal in the limit of large U(1)H charges). For example,
due to the different U(1)H charge assignment 7 (|δij | → 2|δij | + 1), the color anomaly, Eq. (12), changes by
N → 2N + 2 ≈ 2N . This translates (for constant fa) into the same change in f , while also the electromagnetic
anomaly changes by approximately a factor of two, canceling in the coupling to photons.



  
Figure 2 – Constraints on the axion parameter space, i.e. axion mass vs. photon coupling, in the scenario consid-
ered. The axiflavon prediction is depicted by the thin brown band. The exclusions from various axion experiments,
summarized in the legend, are given as grey numbered regions. The dashed colored lines show the projected reach
of future experiments. On the other hand, the blue shaded region corresponds to the estimated bound from
current flavour experiments, while the dashed blue line gives the expected reach of NA62. Finally, the red shaded
area depicts the region that is excluded since a consistent matching of the Higgs potential is impossible (for the
minimal model), which furnishes a new constraint due to axiflavon-Higgs unification.

4 Conclusions

A unified model that addresses the flavour puzzle, solves the strong CP problem, provides a dark
matter candidate, and radiatively triggers electroweak symmetry breaking has been presented,
employing a single scalar multiplet which also contains the Higgs boson. The model is highly
predictive, leading to the constraints on the axion decay constant presented in Eqs. (14) and
(20) for the minimal incarnation and the model including right handed neutrinos, respectively,
with the relevant (current and projected) bounds for the former summarized in Fig. 2.
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12. B. Döbrich [NA62 Collaboration], Frascati Phys. Ser. 66 (2018) 312
13. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, JHEP 1601 (2016) 034
14. T. Gherghetta, N. Nagata and M. Shifman, Phys. Rev. D 93 (2016) no.11, 115010
15. M. K. Gaillard, M. B. Gavela, R. Houtz, P. Quilez and R. Del Rey, Eur. Phys. J. C 78

(2018) no.11, 972
16. T. Alanne, A. Meroni and K. Tuominen, Phys. Rev. D 96 (2017) no.9, 095015


	1 Introduction
	2 Explicit Model and Mass Hierarchies
	3 Higgs Potential and Constraints on the Axion Decay Constant
	4 Conclusions

