255 research outputs found

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    Analytical bias in the measurement of serum 25-hydroxyvitamin D concentrations impairs assessment of vitamin D status in clinical and research settings

    Get PDF
    Measured serum 25-hydroxyvitamin D concentrations vary depending on the type of assay used and the specific laboratory undertaking the analysis, impairing the accurate assessment of vitamin D status. We investigated differences in serum 25-hydroxyvitamin D concentrations measured at three laboratories (laboratories A and B using an assay based on liquid chromatography-tandem mass spectrometry and laboratory C using a DiaSorin Liaison assay), against a laboratory using an assay based on liquid chromatography-tandem mass spectrometry that is certified to the standard reference method developed by the National Institute of Standards and Technology and Ghent University (referred to as the ‘ certified laboratory ’ ). Separate aliquots from the same original serum sample for a subset of 50 participants from the Ausimmune Study were analysed at the four laboratories. Bland-Altman plots were used to visually check agreement between each laboratory against the certified laboratory. Compared with the certified laboratory, serum 25-hydroxyvitamin D concentrations were on average 12.4 nmol/L higher at laboratory A (95% limits of agreement: -17 .8,42.6); 12.8 nmol/L higher at laboratory B (95% limits of agreement: 0.8,24.8); and 10.6 nmol/L lower at laboratory C (95% limits of agreement: -48.4,27.1). The prevalence of vitamin D deficiency (defined here as 25-hydroxyvitamin D < 50 nmol/L) was 24%, 16%, 12% and 41% at the certified laboratory, and laboratories A, B, and C, respectively. Our results demonstrate considerable differences in the measurement of 25-hydroxyvitamin D concentrations compared with a certified laboratory, even between laboratories using assays based on liquid chromatography-tandem mass spectrometry, which is often considered the gold-standard assay. To ensure accurate and reliable measurement of serum 25-hydroxyvitamin D concentrations, all laboratories should use an accuracy-based quality assurance system and, ideally, comply with international standardisation effort

    Vitamin D exposure and Risk of Breast Cancer: a meta-analysis

    Get PDF
    The relationship between vitamin D and breast cancer is still controversial. The present meta-analysis examines the effects of the 25(OH)D, 1,25(OH)2D and vitamin D intake on breast cancer risk. For this purpose, a PubMed, Scopus and Web of Science-databases search was conducted including all papers published with the keywords "breast cancer" and "vitamin D" with at least one reported relative risk (RR) or odds ratio (OR). In total sixty eight studies published between 1998 and 2018 were analyzed. Information about type of study, hormonal receptors and menopausal status was retrieved. Pooled OR or RR were estimated by weighting individual OR/RR by the inverse of their variance Our study showed a protective effect between 25 (OH) D and breast cancer in both cohort studies (RR?=?0.85, 95%CI:0.74-0.98) and case-control studies (OR?=?0.65, 95%CI: 0.56-0.76). However, analyzing by menopausal status, the protective vitamin D - breast cancer association persisted only in the premenopausal group (OR?=?0.67, 95%CI: 0.49-0.92) when restricting the analysis to nested case-control studies. No significant association was found for vitamin D intake or 1,25(OH)2D. CONCLUSION: This systematic review suggests a protective relationship between circulating vitamin D (measured as 25(OH) D) and breast cancer development in premenopausal women

    Plakophilin-3 Is Required for Late Embryonic Amphibian Development, Exhibiting Roles in Ectodermal and Neural Tissues

    Get PDF
    The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types

    Speciation and fate of trace metals in estuarine sediments under reduced and oxidized conditions, Seaplane Lagoon, Alameda Naval Air Station (USA)

    Get PDF
    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60 year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS(- )complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60 year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were bonded to an oxide-substrate at the end of the 90-day oxidation experiment. Lead and chromium pose a minimal hazard from dredging because they are bonded to relatively insoluble carbonate, phosphate, phyllosilicate, or oxide minerals that are stable in seawater. These results point out the specific chemical behavior of individual metals in estuarine sediments, and the need for direct confirmation of metal speciation in order to constrain predictive models that realistically assess the fate of metals in urban harbors and coastal sediments

    Gold(I)-Catalyzed Coupling Reactions for the Synthesis of Diverse Small Molecules Using the Build/Couple/Pair Strategy

    Get PDF
    The build/couple/pair strategy has yielded small molecules with stereochemical and skeletal diversity by using short reaction sequences. Subsequent screening has shown that these compounds can achieve biological tasks considered challenging if not impossible (‘undruggable’) for small molecules. We have developed gold(I)-catalyzed cascade reactions of easily prepared propargyl propiolates as a means to achieve effective intermolecular coupling reactions for this strategy. Sequential alkyne activation of propargyl propiolates by a cationic gold(I) catalyst yields an oxocarbenium ion that we previously showed is trapped by C-based nucleophiles at an extrannular site to yield α-pyrones. Here, we report O-based nucleophiles react by ring opening to afford a novel polyfunctional product. In addition, by coupling suitable building blocks, we subsequently performed intramolecular pairing reactions that yield diverse and complex skeletons. These pairing reactions include one based on a novel aza-Wittig-6π-electrocyclization sequence and others based on ring-closing metathesis reactions.Chemistry and Chemical Biolog
    corecore