15 research outputs found

    Inactivation of CDK/pRb Pathway Normalizes Survival Pattern of Lymphoblasts Expressing the FTLD-Progranulin Mutation c.709-1G>A

    Get PDF
    8 figuras, 2 tablasBackground Mutations in the progranulin (PGRN) gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP), although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK) CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation. Methodology/Principal Findings We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal. Conclusion/Significance The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDPThis work has been supported by grants from Ministry of Education and Science (SAF2007-61701, SAF2010-15700, SAF2011-28603), Fundación Eugenio Rodríguez Pascual, and Basque Government (Saiotek program 2008–2009). NE holds a fellowship of the JAE predoctoral program of the CSICPeer reviewe

    A biomaterials approach to influence stem cell fate in injectable cell-based therapies

    Get PDF
    Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation

    Energy state and micromechanical properties of PbO-ZnO-B₂O₃ glass-ceramic functional coatings on AISI420 stainless steel substrate

    No full text
    On AISI420 steel substrates with different roughness, PbO-ZnO-B₂O₃ glass crystalline functional coatings were synthesized by means of thick films method. The parameters of micro topography and values of free surface energy of the coatings and those of substrates surfaces have been investigated. The character of influence of substrates' micro topography and of free surface energy on the micromechanical properties of the synthesized coatings has been ascertained

    Parts-per-Million of Polyethylene Glycol as a Non-Interfering Blocking Agent for Homogeneous Biosensor Development

    No full text
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Liu, B., Huang, P.-J. J., Zhang, X., Wang, F., Pautler, R., Ip, A. C., & Liu, J. (2013). Parts-per-Million of Polyethylene Glycol as a Non-Interfering Blocking Agent for Homogeneous Biosensor Development. Analytical Chemistry, 85(21), 10045–10050. https://doi.org/10.1021/ac4024654Many homogeneous assays are complicated by the adsorption of probe molecules by the surface of reaction vessels, which are often made of polypropylene or polystyrene-based plastics. To solve this problem, many protein and surfactant-based blocking agents are used. However, these blockers may interfere with intended assays by sequestering transition-metal ions, inducing protein denaturing, generating air bubbles or making pores in membranes. Coating surfaces with polyethylene glycol (PEG) through covalent linkages has been proven to be an effective method to minimize protein adsorption. However, this method is more difficult to apply on plastic surfaces and is quite expensive. While unmodified PEG is often considered as a nonadsorbing polymer, in this Technical Note, we report that PEG at very low concentration (ppm level) can still effectively block plastic surfaces. This method works for DNA, protein, and liposome-based assays as long as the molecular weight of PEG is greater than 2000. PEG works because of multivalent hydrophobic interaction from its repeating methylene units. This Technical Note will not only facilitate biosensor development, but also enhance our understanding of the interaction between various molecules and plastic surfaces.University of Waterloo || Canadian Foundation for Innovation || Ontario Ministry of Research & Innovation || Canadian Institutes of Health Research || Natural Sciences and Engineering Research Council |

    Mechanical properties and total hydroxycinnamic derivative release of starch/glycerol/Melissa officinalis extract films

    Get PDF
    The aim of this study was to investigate the mechanical properties of starch/glycerol/Melissa officinalis, a topical drug delivery system for labial herpes treatment. Four films were prepared with different concentrations of starch, glycerol, and Melissa officinalis extract. The results revealed that increasing the glycerol concentration in the film reduced elasticity modulus and tensile strength, exhibiting a plasticizing effect. The increase in free volume resulted in increased release of hydroxycinnamic derivatives expressed as rosmarinic acid.<br>O objetivo deste trabalho foi estudar as propriedades mecânicas e o mecanismo de liberação de um sistema tópico de liberação prolongada para o tratamento do Herpes labial a partir de filmes de amido/glicerol/extrato de Melissa officinalis, planta com comprovada atividade antiviral. Foram obtidos quatro filmes poliméricos com diferentes concentrações de amido, glicerol e extrato de Melissa officinalis os quais foram caracterizados mecanicamente e determinado o perfil de liberação de derivados hidroxicinâmicos. Os resultados demonstraram que o aumento da concentração de glicerol no filme produz uma redução no módulo de elasticidade e na tensão de deformação como conseqüência do efeito plastificante. O aumento no volume livre do polímero resultou em aumento da liberação dos derivados hidroxicinâmicos expressos como ácido rosmarínico
    corecore