4,862 research outputs found

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    The triggering of MHD instabilities through photospheric footpoint motions

    Get PDF
    The results of 3D numerical simulations modelling the twisting of a coronal loop due to photospheric vortex motions are presented. The simulations are carried out using an initial purely axial field and an initial equilibrium configuration with twist, . The non-linear and resistive evolutions of the instability are followed. The magnetic field is twisted by the boundary motions into a loop which initially has boundary layers near the photospheric boundaries as has been suggested by previous work. The boundary motions increase the twist in the loop until it becomes unstable. For both cases the boundary twisting triggers the kink instability. In both cases a helical current structure wraps itself around the kinked central current. This current scales linearly with grid resolution indicating current sheet formation. For the cases studied 35-40% of the free magnetic energy is released. This is sufficient to explain the energy released in a compact loop flare

    PANAMA TOLLS QUESTION

    Get PDF

    Unstable coronal loops : numerical simulations with predicted observational signatures

    Get PDF
    We present numerical studies of the nonlinear, resistive magnetohydrodynamic (MHD) evolution of coronal loops. For these simulations we assume that the loops carry no net current, as might be expected if the loop had evolved due to vortex flows. Furthermore the initial equilibrium is taken to be a cylindrical flux tube with line-tied ends. For a given amount of twist in the magnetic field it is well known that once such a loop exceeds a critical length it becomes unstableto ideal MHD instabilities. The early evolution of these instabilities generates large current concentrations. Firstly we show that these current concentrations are consistent with the formation of a current sheet. Magnetic reconnection can only occur in the vicinity of these current concentrations and we therefore couple the resistivity to the local current density. This has the advantage of avoiding resistive diffusion in regions where it should be negligible. We demonstrate the importance of this procedure by comparison with simulations based on a uniform resistivity. From our numerical experiments we are able to estimate some observational signatures for unstable coronal loops. These signatures include: the timescale of the loop brightening; the temperature increase; the energy released and the predicted observable flow speeds. Finally we discuss to what extent these observational signatures are consistent with the properties of transient brightening loops.Comment: 13 pages, 9 figure

    Ideal kink instability of a magnetic loop equilibrium

    Full text link
    The force-free coronal loop model by Titov & D\'emoulin (1999} is found to be unstable with respect to the ideal kink mode, which suggests this instability as a mechanism for the initiation of flares. The long-wavelength (m=1m=1) mode grows for average twists \Phi\ga3.5\pi (at a loop aspect ratio of \approx 5). The threshold of instability increases with increasing major loop radius, primarily because the aspect ratio then also increases. Numerically obtained equilibria at subcritical twist are very close to the approximate analytical equilibrium; they do not show indications of sigmoidal shape. The growth of kink perturbations is eventually slowed down by the surrounding potential field, which varies only slowly with radius in the model. With this field a global eruption is not obtained in the ideal MHD limit. Kink perturbations with a rising loop apex lead to the formation of a vertical current sheet below the apex, which does not occur in the cylindrical approximation.Comment: Astron. Astrophys. Lett., accepte

    Action: Tell me more Albert!

    Get PDF
    The new school year opens with the instructor cheerfully announcing to the students on the first day, “Good morning, class! Welcome to the fun of a new language called algebra”. He continues, “Today we are going to have a conversation about your success in this classroom. First, is the area of mathematics called algebra, necessary for your future? None of the students responds

    Observation of kink instability during small B5.0 solar flare on 04 June, 2007

    Full text link
    Using multi-wavelength observations of SoHO/MDI, SOT-Hinode/blue-continuum (4504 \AA), G-band (4305 \AA), Ca II H (3968 \AA) and TRACE 171 \AA, we present the observational signature of highly twisted magnetic loop in AR 10960 during the period 04:43 UT-04:52 UT at 4 June, 2007. SOT-Hinode/blue-continuum (4504 \AA) observations show that penumbral filaments of positive polarity sunspot have counter-clock wise twist, which may be caused by the clock-wise rotation of the spot umbrae. The coronal loop, whose one footpoint is anchored in this sunspot, shows strong right-handed twist in chromospheric SOT-Hinode/Ca II H (3968 \AA) and coronal TRACE 171 \AA\, images. The length and the radius of the loop are LL\sim80 Mm and aa\sim4.0 Mm respectively. The distance between neighboring turns of magnetic field lines (i.e. pitch) is estimated as \approx 10 Mm. The total twist angle, Φ\Phi\sim12π\pi (estimated for the homogeneous distribution of the twist along the loop), is much larger than the Kruskal -Shafranov instability criterion. We detected clear double structure of the loop top during 04:47-04:51 UT on TRACE 171 \AA \ images, which is consistent with simulated kink instability in curved coronal loops (T{\"o}r{\"o}k et al. 2004). We suggest, that the kink instability of this twisted magnetic loop triggered B5.0 class solar flare, which occurred between 04:40 UT and 04:51 UT in this active region.Comment: 24 pages, 5 Figures; The Astrophysical Journa

    Observational properties of a kink unstable coronal loop

    Get PDF
    Aims. Previous work on the dynamics of the kink instability has concentrated on the evolution of the magnetic field and associated current sheets. Here we aim to determine the observational consequences of the kink instability in short coronal loops, particularly what images TRACE would record of such an instability. This paper concentrates on the internal m = 1 mode where the kink structure of the instability may not be apparent from the global field shape. This is most relevant to the observation of active region brightenings and coronal bright points. Methods. An existing fluid code was modified to include the TRACE temperature response function in order to calculate temporally and spatially averaged, line of sight images in the 171, 195 and 284 Å band passes for straight, kink unstable flux tubes. Results. Two new fluid effects of the kink instability are discovered: the circular enhancement of the density at the foot points and the appearance of a low density band running across the flux tube. The second of these effects is shown to be imagable by TRACE and hence would be a good candidate observational signature for an internal m = 1 kink unstable loop

    Police use-of-force policies should be replaced by those based more closely on legal principles

    Get PDF
    In the United States, many police forces determine how much force to use when dealing with suspects through a continuum which ranks different levels of force based on resistance. In new research which examines more than 700 use of force incidents in one city, Scott M. Mourtgos, Ian T. Adams and Samuel R. Baty find that there is very little difference in how police use less-lethal force, despite this apparent ranking. They argue that rather than using continuums to determine the level of force to use, US police forces should base their use of force on legal principles

    Current driven rotating kink mode in a plasma column with a non-line-tied free end

    Get PDF
    First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. Instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.Comment: 4 pages, 6 figure
    corecore