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Abstract. The results of 3D numerical simulations modelling the twisting of a coronal loop due to photospheric
vortex motions are presented. The simulations are carried out using an initial purely axial field and an initial
equilibrium configuration with twist, Φ = LBθ/rBz < Φcrit. The non-linear and resistive evolutions of the
instability are followed. The magnetic field is twisted by the boundary motions into a loop which initially has
boundary layers near the photospheric boundaries as has been suggested by previous work. The boundary motions
increase the twist in the loop until it becomes unstable. For both cases the boundary twisting triggers the kink
instability. In both cases a helical current structure wraps itself around the kinked central current. This current
scales linearly with grid resolution indicating current sheet formation. For the cases studied 35–40% of the free
magnetic energy is released. This is sufficient to explain the energy released in a compact loop flare.
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1. Introduction

The solar corona is filled with coronal loops of almost uni-
form cross-section. These coronal loops may be created in
two ways. They may be formed by the emergence of non-
potential magnetic fields through the photosphere into the
corona (Mok et al. 1997; Pevtsov et al. 1997; Longcope &
Welsch 2000; Handy & Schrijver 2001) or they could be
formed by photospheric motions twisting a potential coro-
nal magnetic field. The footpoints of the coronal loops are
embedded in the photosphere and, since the photosphere
is much denser than the corona (ρ = 8 × 10−5 kg m−3

in the photosphere compared to 1× 10−11 kg m−3 in the
corona), photospheric motions can twist the loop, taking it
through a sequence of nearly force-free equilibria. These
motions are not only a possible mechanism for forming
a coronal loop, they also provide a possible mechanism
for triggering MHD instabilities. The twisting of the mag-
netic field allows magnetic energy to build up in a loop,
but once the twist (Φ = LBθ/rBz) has exceeded a critical
value, Φcrit, the loop may become unstable, releasing mag-
netic energy (Raadu 1972; Hood & Priest 1979). Another
possible mechanism for triggering this instability is that
a loop will emerge into the corona already twisted. It will
rise and as it rises the twist, Φ, will increase because the

Send offprint requests to: C. L. Gerrard,
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length of the loop, L increases. The results reported in
this paper are most applicable to the twisting of a loop
due to photospheric motions. However they will be quan-
titatively similar to the situation where L increases, since
both situations involve the slow evolution of the loop be-
yond marginal stability.

Previous work (Galsgaard & Nordlund 1997; Velli et al.
1997; Lionello et al. 1998; Lionello et al. 1998b; Arber et al.
1999; Baty 2000a,b; Gerrard et al. 2001) has suggested
that during the non-linear evolution of such an instability
a current sheet may form. However, other authors (Baty
& Heyvaerts 1996; Baty 1997; Baty et al. 1998) have found
that a finite current concentration forms. At this point it
may be useful to explain the difference between a current
sheet and a current concentration. A current concentra-
tion is a large build up of current but the current will
saturate at some finite value. For a current sheet the cur-
rent density is infinite and, therefore, there is no satura-
tion. Numerically, a current sheet can be recognized by the
fact that the maximum value of the current will increase
with higher grid resolution. The effect of the initial equi-
librium configuration on current sheet formation is more
complicated than was previously believed (Gerrard et al.
2001; Ali & Sneyd 2001). However, it does appear that for
certain configurations current sheets do form during the
non-linear evolution of the kink instability. This is impor-
tant since it implies that magnetic reconnection can occur
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and be driven on a timescale of the order of the Alfvén
timescale. The value of the coronal resistivity is unknown
but if the instability does produce a current sheet then
reconnection will always occur, regardless of the value of
the resistivity. Those simulations of instabilities in coro-
nal loops which have included resistivity suggest that if
current sheets do form then reconnection will occur and
will release approximately half the free magnetic energy
(Gerrard et al. 2001; Baty 2000a,b; Arber et al. 1999).
The free magnetic energy is defined as the energy stored
in the Bθ component of the equilibrium magnetic field.
This energy is comparable to that released in a compact
loop flare. A coronal loop with width 106 m, length 107 m
and magnetic field strength 100 G (Shimizu 1996) can re-
lease 5 × 1028 ergs and there is sufficient energy released
due to the triggering of an MHD instability to explain this
energy release. There are of course other possible expla-
nations for compact loop flares but the present study does
show that triggering the MHD m = 1 instability cannot
be ruled out as it operates on the correct timescales and
releases the right amount of energy.

Previous work suggests that a loop whose twist has
exceeded Φcrit will be unstable to the m = 1 kink insta-
bility. For some initial field configurations this instability
will cause current sheets to form and reconnection will be
driven in these current sheets. However, these simulations
began with the loop already containing more than the
critical amount of twist (Velli et al. 1997; Lionello et al.
1998; Lionello et al. 1998b; Baty & Heyvaerts 1996; Baty
1997; Baty et al. 1998; Arber et al. 1999; Baty 2000a,b;
Gerrard et al. 2001). In this paper we wish to consider the
effect of twisting a loop from an initial state in which
it does not contain sufficient twist to be unstable. We
will then investigate how the twisting motions affect the
loop and whether it does become unstable and evolve in
the manner suggested by the previous simulations. It has
been speculated that if the loop evolves slowly through the
marginally stable point then it may not go violently un-
stable but simply move into a nearby helical equilibrium.
This is the crucial point addressed in this paper.

Some theoretical studies of the effects of slow photo-
spheric vortex motions on a coronal loop have been carried
out. Lothian & Hood (1989) investigated a variety of twist
profiles for a toroidal loop using a Fourier-Bessel series ex-
pansion. They found that a photospheric boundary layer
was present at both ends of the loop in all cases and that
outside this layer the field was cylindrically symmetric.
The contracted region of the loop could be described by
a constant cross-sectional area. They suggested that these
results for small twist would also hold for larger values of
twist and that the same type of boundary layer would be
present.

Steinolfson & Tajima (1987) carried out 2D axisym-
metric simulations to investigate the response of the mag-
netic field in a coronal loop to photospheric motions. They
suggested that the motions will cause a build up of energy
and that an ideal MHD instability will release the energy.
However, they only considered the build up stage of the

evolution. They found that the photospheric motions did
increase the free magnetic energy.

Browning & Hood (1989) used a numerical code to
solve the non-linear, 2D, axisymmetric Grad-Shafranov
equation and investigated the magnetostatic equilibrium
of a coronal loop twisted by slow photospheric motions.
They found that the core of the loop contracts while the
outer part expands. Again they found that, when the
length of the loop is greater than its radius, the majority
of the loop can be described by a constant cross-sectional
area. Browning & Hood (1989) compared their results to
1D results and concluded that the agreement between the
two approaches is excellent except in a small boundary
layer close to the footpoints.

Robertson et al. (1992) again considered slow photo-
spheric motions. They carried out 2D time dependent sim-
ulations and showed that 1D equilibria are a good approx-
imation to the slow 2D evolution. Finally, they considered
the 2D stability of coronal loops as they are twisted. As
in the two papers discussed above Robertson et al. (1992)
find that the loop has a constant cross-sectional area ex-
cept in small boundary layers near the photosphere. They
did not find any dynamic behaviour of the loop in the
2D and 1D simulations. They, therefore, concluded that
any dynamic behaviour must result from a 3D instability.
They then calculated the upper and lower stability bounds
for a 3D instability.

There have been very few 3D numerical studies of the
effect of the twisting of a loop due to photospheric mo-
tions. Mikic et al. (1990) carried out 3D MHD simulations
to model the evolution of a coronal loop due to localised
photospheric vortex flows. They began with a purely axial
field which was then twisted by motions applied at both
ends of the loop. They found the same compression of the
loop as was suggested by the theoretical results and 2D
simulations of Lothian & Hood (1989), and Browning &
Hood (1989). They also found that for large aspect ra-
tio loops the equilibrium field is independent of z over
most of the loop except in the boundary layer near the
photosphere. Again this was in agreement with previous
results. Mikic et al. (1990) also considered the linear sta-
bility of the loop formed by the twisting motions. They
found that the critical twist was Φcrit = 4.8π on the axis.
Once the twist exceeded this value the loop became un-
stable to the kink instability. However, the self-consistent
non-linear evolution of the twisted loop was not followed
and so no conclusion about current sheet formation or en-
ergy release could be drawn.

Galsgaard & Nordlund (1997) investigated the devel-
opment of the internal and external kink for a straight
flux tube stressed by oppositely directed rotating motions
at the boundaries. They solved the resistive MHD equa-
tions in 3D and investigated the topological and energetic
aspects of the non-linear evolution of the kink instability.
The boundary motion was such that it introduced an in-
ternal shear in the tube as well as the overall twist. They
found that, while the average Poynting flux after the in-
stability was similar for both internal and external kink,
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there was a qualitative difference in the level of joule dis-
sipation. They suggest that the internal kink is of most
interest in relation to coronal loop heating. After the in-
stability it quickly reaches a state of near balance between
boundary work and dissipation. They conclude that these
experiments suggest that the rotation or shear at the foot-
points could be a source of quasi-steady heating of coronal
loops.

It can be seen, therefore, that while Mikic et al. (1990)
considered twisting motions they only carried out a linear
investigation of the instability. The full non-linear evolu-
tion was followed by Galsgaard & Nordlund (1997) but
they concentrated on the steady-state, long term energy
release and didn’t give details of the earlier evolution. In
this paper we have followed the full non-linear evolution
and have carried out scaling experiments to study current
sheet formation. We have then investigated the energy re-
lease from a single kink instability event.

Klimchuk et al. (2000) carried out 3D simulations of a
loop embedded within a larger dipole configuration. Their
simulations showed that twisting such a loop produces a
circular cross-section. They, therefore, suggest that pho-
tospheric twisting may provide an explanation for the ob-
served constant cross-section of coronal loops.

In this paper we neglect the toroidal curvature of
the coronal loop. We investigate two cases. In case 1 we
take a purely axial magnetic field and apply twisting mo-
tions at the lower and upper boundaries following Mikic
et al. (1990). In case 2 we take a twisted loop for which
Φ < Φcrit. We then apply boundary motions to increase
the twist beyond the critical value. In particular, we in-
vestigate whether applying the boundary conditions to
model photospheric twisting will cause the loop to be-
come unstable to the kink instability. We then investigate
whether the instability will evolve in a similar manner to
that suggested by simulations for which the initial equi-
librium configuration has Φ > Φcrit or whether the slow
evolution through marginal stability will cause it to evolve
to a new, nearby, stable equilibrium.

2. Numerical details

The evolution of the coronal loop is modelled by the MHD
equations,

∂ρ

∂t
= −∇.(ρv), (1)

∂

∂t
(ρv) = −∇.(ρvv) +

1
µ0

(∇×B)×B −∇P, (2)

∂B

∂t
= ∇× (v ×B)−∇×

(
η
∇×B
µ0

)
, (3)

∂

∂t
(ρε) = −∇.(ρεv)− P∇.v + ηj2, (4)

with specific energy density,

ε =
P

(γ − 1)ρ
· (5)

B is the magnetic field, j = (∇ × B)/µ0 is the current
density, v is the velocity, P is the thermal pressure, ε is the
specific energy density (γ = 5/3), ρ is the mass density,
η is the resistivity, and µ0 = 4π × 10−7 is the magnetic
permittivity. We ignore the effects of thermal conduction,
radiation and heating, apart from ohmic heating. Also,
since the scale height in the corona is relatively large (ap-
proximately 100Mm) compared to the height of the loops
(10−50Mm), we neglect the effect of gravity.

The equations are made dimensionless by setting,
r −→ r∗r̃, B −→ B∗B̃, v −→ vAṽ,
P −→ P ∗P̃ , t −→ t∗ t̃, ρ −→ ρ∗ρ̃, η −→ η∗η̃,
where a tilde denotes a dimensionless variable. vA is the
Alfvén speed given by vA = B∗/

√
µ0ρ∗, t∗ = r∗/vA is the

Alfvén transit time, P ∗ = B∗2/µ0. Often the normalisa-
tion adopted in MHD studies is to take η∗ = µ0r

∗vA/S so
that for uniform resistivity we can write Eq. (3) as,

∂B

∂t
= ∇× (v ×B) +

1
S
∇2B, (6)

where S, the Lundquist number is defined as S = τd/τA
where τA is the Alfvén timescale and τd = L2/η is the
magnetic diffusion timescale. However we do not use uni-
form resistivity and consequently we have kept a nor-
malised η explicitly in the equations by taking η∗ =
µ0r
∗vA. This is then chosen to prevent | j | from greatly

exceeding jgrid as discussed below. Thus, we obtain the
dimensionless equations, removing the tildes from the di-
mensionless quantities,

∂ρ

∂t
= ∇.(ρv), (7)

∂

∂t
(ρv) = −∇.(ρvv) + (∇×B)×B −∇P, (8)

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B), (9)

∂

∂t
(ρε) = −∇.(ρεv)− P∇.v + ηj2. (10)

In the following sections we will distinguish between an
ideal MHD phase and a resistive MHD phase. In both
cases these are intended as a shorthand for a more compli-
cated description of the numerical properties of the code,
how resistivity is implemented in the code and the under-
lying physics. In the initial phase of the simulations the
loops are being slowly twisted by photospheric motion,
MHD waves are present and the fields are evolving but
there are no structures on short scales. Since the coronal
resistivity is so low this phase would be accurately de-
scribed by ideal MHD in which there was neither viscosity
nor resistivity, i.e. no dissipation. The code has no explicit
dissipation during this phase and will thus converge to the
ideal MHD result in the limit of infinite resolution. In prac-
tice of course there is always some numerical dissipation
due to the finite accuracy of the discrete representation of
continuous variables. However, by repeating simulations
on higher resolutions we can be sure that this numerical
dissipation is not effecting the results by continuing this
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process until the higher resolution runs show no signifi-
cant difference from those of a lower resolution. In this
context significant features are the onset time of the in-
stability, the growth rate and kinetic/magnetic energy at
the instant the resistivity is turned on. Hence, even though
there is always some numerical dissipation present during
this phase we call this the ideal MHD phase as there are
no unresolved structures and through convergence tests we
can be sure that the numerical dissipation is unimportant.

A short time after the onset of the m = 1 instability
helical current concentrations begin to form. If these are
the early manifestations of a current sheet forming then
the current in these regions would grow without bound.
As discussed above, this would reach a level at which re-
sistive effects could not be ignored and the MHD insta-
bility would drive reconnection at these locations. This
increase of the current density can also be viewed as a
collapse of the scalelength of the magnetic field varia-
tions. Numerically, once this scalelength approaches the
grid spacing we apply sufficient local resistivity to quench
the current density at that value. This is implemented
by estimating the maximum current allowed on the grid
to be jgrid, where jgrid = |B|/(dx) and dx is the local
grid spacing. If the local value of |j| exceeds jgrid then
the resistivity is set to dx in that cell. This value of re-
sistivity ensures that the CFL condition still limits the
timestep to dx, not dx2, and that any excess current den-
sity, i.e. |j|−jgrid, is dissipated in approximately one step.
Hence, the current is quenched at jgrid. Note that jgrid is
itself a function of position and time since regions in which
the magnetic field is large can support a larger resolved
current than those with smaller magnetic field. Once the
resistivity is turned on by this process we call this the
resistive phase. The ideal phase had the desirable prop-
erty that consistency of the numerical scheme guarantees
that the result would converge to the ideal MHD result. In
the resistive phase however the resistivity is grid depen-
dent and thus the results from this phase will not converge
to the exact resistive MHD result with a fixed resistivity.
This does not prevent this approach from giving quanti-
tatively accurate results for the energy release etc. during
the resistive phase provided that the results do not change
with grid resolution. Previous work in this area by Arber
et al. (1999) showed that the resistive dissipation in cur-
rent sheets driven by MHD instabilities was insensitive to
the choice of resistivity. Physically this is justified if all of
the free magnetic energy which is pushed by the instabil-
ity into the current sheet is dissipated in that region. This
would be true of anomalous resistivity, such as that gen-
erated by ion-acoustic turbulence. In such circumstances
it is the rate at which flux is moved into the current sheet
which determines the energy release rate. Since the rate
of flow of flux into the current sheet region is determined
by the large scale MHD instability this is resolved and
consequently provided the resistivity is sufficient to dis-
sipate the inflow of the magnetic field the energy release
will actually be independent of that resistivity (Biskamp
1993). Only if the energy released is not constant across

resolutions, i.e. converged, are runs with fixed constant
resistivity necessary.

The simulations are carried out using the 3D MHD,
Lagrangian remap, shock capturing code (Lare3d) de-
scribed in Arber et al. (2001). The Lagrangian step is
fully 3D, uses the predictor-corrector method and arti-
ficial viscosity. The remap step uses Van Leer gradient
limiters (Van Leer 1979) to ensure that it is monotonic-
ity preserving. Furthermore, Lare3d uses Evans & Hawley
constrained transport (Evans & Hawley 1988) to guaran-
tee that if ∇.B is initially zero it is maintained at zero
to machine precision throughout the evolution. The nu-
merical grid is staggered so that the density, pressure and
specific energy density are defined at the cell centres; the
velocities at the vertices; the magnetic field components at
the cell faces and the current components along the edges
of the numerical cell. | j |= (j2

x+j2
y+j2

z )
1
2 and the resistiv-

ity are defined at the same vertices as the velocities. The
staggered grid reduces the amount of averaging required
in some of the calculations, thus reducing the associated
error, and removes chequerboard biasing. Further details
of the code are given in Arber et al. (2001).

The code is written in Cartesian co-ordinates with the
numerical box stretching from −Lx/2 to Lx/2 and −Ly/2
to Ly/2. The values of Lx and Ly are chosen such that
the boundary conditions imposed in the x and y directions
have no effect on the evolution of the loop, which remains
localised within a smaller region. Line-tying boundary
conditions are applied to the magnetic field at z = −Lz/2
and z = Lz/2 and the velocities at the lower and upper
boundaries are chosen to model photospheric motions.

3. Initial equilibrium

In this paper we present the results of numerical simu-
lations carried out using two initial equilibrium config-
urations. In both cases photospheric vortex motions are
modelled by applying a twisting velocity of the form,

vθ =

{
v0

r
r0

(
1− r2

r2
0

)2

r < r0,

0.0 r ≥ r0,
(11)

in opposite directions on the upper and lower boundaries,
following Mikic et al. (1990). For all of the simulations r0
is taken to be 1 (i.e. the dimensional radius is r∗), thus
the twisting is localised within this radius. The numeri-
cal grid is stretched such that 50% of the grid points lie
within r = 1 giving higher resolution within this region.
The boundaries in the x and y direction are positioned at
a distance (Lx = Ly = 5) such that the boundary con-
ditions in those directions will not affect the evolution of
the loop. The magnetic field is line-tied at the upper and
lower boundaries.

3.1. Case 1

We take an initially purely axial magnetic field,

Bx = 0, By = 0, Bz = B0 = 1, (12)
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Fig. 1. A plot of the twist against radius for case 2.

with uniform density (ρ = 1) and pressure given by a
plasma β of 10−2. The vortex motions are applied at the
boundaries such that the field is twisted in a clockwise
direction on the upper boundary and in an anti-clockwise
direction on the lower boundary. Lz is taken to be 2π.

3.2. Case 2

Here we begin the simulations with a twisted straight
cylinder given by,

Bθ =
{
r(1− r2)2 r < 1.0,

0.0 r ≥ 1.0. (13)

This gives Bθ = 0.0 and jz = 0.0 at r = 1.0 – there is no
net axial current in the loop. The axial field component is
obtained from,

B2
z = B2

0 −B2
θ −

∫ r

0

2
B2
θ

u
du (14)

as,

Bz =


√
B2

0 − 1
5 − r2(1− r2)4 + 1

5 (1− r2)5 r < 1.0,√
B2

0 − 1
5 r ≥ 1.0.

(15)

B2
z must remain positive hence we choose B0 = 0.5, and

run the simulation for a uniform density of 1.0 and pres-
sure given by a plasma β of 10−3. This initial equilibrium
configuration gives the twist profile shown in Fig. 1. This
is Equilibrium 1 from Gerrard et al. (2001).

From the linear results for this equilibrium
(Van der Linden, private communication, 1999) we
know that the dimensionless critical length of the loop
is 4.4. We, therefore, take a length which is shorter than
this, Lz = π to guarantee that the loop is initially stable.

4. Results

4.1. Case 1

4.1.1. Ideal evolution and current sheet scaling

In this case we begin with a purely axial field. The mo-
tions applied at the boundaries twist this field forming a

Fig. 2. Bθ (LHS) and BZ (RHS) plotted against x for the
initially axial loop at t = 50 Alfvén times. These are plotted
at the centre of the loop (z = 0) but their form does not vary
with z.

Fig. 3. A surface plot of | j | at z = 0 for the initially axial
loop at t = 50 Alfvén times.

current loop and then continue to increase the twist in
the loop. We carry out these simulations for v0 = 0.075.
To model granular motions we would require a velocity of
0.001−0.01vA, therefore, these values are approximately
a factor of 10 larger than the required velocity. However,
they are significantly smaller than the Alfvén speed and
to take a more physical velocity would require substantial
computational time. Thus, the values used are a reason-
able compromise.

We carry out the simulations on an 813, 1213 and a
1613 numerical grid. During the early part of the simula-
tions the twisting motions begin to twist the field into a
loop. This gives Bθ andBz profiles as shown in Fig. 2 and a
current profile as shown in Fig. 3. These are very simi-
lar to the initially unstable profiles which have been used
in previous simulations (Gerrard et al. 2001; Baty 2000;
Arber et al. 1999; Lionello et al. 1998; Velli et al. 1997).
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Fig. 4. An isosurface of the current during the early phase of
the twisting showing the boundary layers near the photospheric
footpoints.

This suggests that the previous simulations started from
a reasonable initial configuration. However, these papers
began with a loop which was well above the instability
threshold. Our results also agree with those of Browning
& Hood (1989), Lothian & Hood (1989) and Robertson
et al. (1992) in that the loop formed by the twisting mo-
tions does have a constant cross sectional area except in
a small boundary layer near the photospheric footpoints.
This can be seen in Fig. 4 as an expansion near the
photosphere.

The top of Fig. 5 shows the field lines at t = 0, demon-
strating that the field is purely axial. The bottom of the
figure shows the field lines at t = 60 Alfvén times. This
shows that the footpoint motions are indeed twisting the
field to form a current carrying loop.

Once the loop is formed we allow the twisting to con-
tinue and observe how the loop evolves. The loop can be
seen to be kinked at t = 100 Alfvén times (the lefthand
side Fig. 6). This means that the loop has become unsta-
ble to the m = 1 kink instability as suggested by previ-
ous simulations. Figure 7 shows a plot of the growth rate
against time indicating that the loop has become unsta-
ble after 100 Alfvén times. The growth rate is calculated
from the total kinetic energy by taking ∇(log(K.E)). The
growth rate of 0.3τ−1

A is similar to the growth rate for the
kink instability for the configuration investigated in Arber
et al. (1999). We can compare the time for the instability
to be triggered with the prediction from the linear theory.
Linear theory suggests that a loop will become unstable
to the kink instability when the twist exceeds 2.5π. Here,
the twisting motions inject twist into the loop giving,

Φ = 2
∫ t

0

vθ
r

dt, (16)

so,

Φ = 2v0t
(
1− r2

)2
. (17)

We then calculate the approximate time at which the kink
instability will be triggered. To obtain a first estimate,
we integrate the twist over the cross-sectional area of the

Fig. 5. A selection of fieldlines at t = 0 (top) and at t = 60 τA
(bottom).

loop and find the time at which the average twist is equal
to 2.5π,∫ 2π

0

∫ r=1

0 Φrdrdθ
πr2

= 4tv0

∫ r=1

0

(
1− r2

)2
rdr = 2.5π, (18)

so,

t =
15π
4v0
· (19)

Here, we have v0 = 0.075 which gives t = 157.1. To cal-
culate a second estimate, that is usually a lower limit, we
calculate the time at which the maximum twist is equal
to 2.5π,

2v0

(
1− (0)2

)2
t = 2.5π, (20)

and obtain t = 52.3. We can, therefore, predict that the
loop will become unstable to the kink instability between
t = 52.3 and t = 157.1 Alfvén times. The results from
the simulations, which suggest that the loop becomes un-
stable at approximately t = 100 Alfvén times, agree with
this prediction. However, it should be noted that these
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Fig. 6. An isosurface of the kinked current at t = 100 Alfvén
times (LHS) and an isosurface of the current at t = 120 Alfvén
times (RHS) showing a helical current concentration starting
to form.

Fig. 7. Plot of the growth rate, γ, against time for the simu-
lations for case 1.

linear predictions are very crude estimates, especially for
the lower limit.

At t = 100 Alfvén times the loop can be seen to be
kinked. At later times a helical concentration of current
builds up around the kinked central column (Fig. 6, RHS).
To test whether this structure is a current sheet or whether
the current saturates at a finite value we carry out the
simulations on three different resolutions, 813, 1213 and
1613. If in all of these runs the maximum current density
saturates at jgrid then we conclude that this is consistent
with the formation of a current sheet as the current has
reached the maximum value allowed on that resolution.
This behaviour is shown in Fig. 8 which is a plot of the
current for the 813 simulations from t = 110 to t = 130.
The m = 1 instability leads to a rapid rise in the maximum
current density after t = 120. At t = 122 the resistivity
is turned on to prevent increase in the current density
beyond jgrid. As a final confirmation that the maximum

Fig. 8. Plot of maximum current against time for case 1.

Table 1. Scaling of the maximum of the current with higher
resolution.

grid scalings

nx, ny, nz 813 1213 1613

dx 0.0532497 0.0359548 0.0269261

jmax 18 27 36
Expected scaling 18.1 27.0 35.9

Fig. 9. A plot through the current sheet along the line x = y
at z = 0 at t = 125.

current density is scaling as a current sheet Table 1 gives
the values of dx and jmax for each grid resolution. The
expected scalings are based on the 1213 result and jmax

is the maximum current density when the resistivity is
turned on. As can be seen from Table 1, the current scales
with higher resolution and always triggers the resistive
phase, i.e. locally |j| exceeds jgrid. This indicates that the
structure seen in Fig. 6 is indistinguishable from a current
sheet on the resolutions tested. Figure 9 is a plot through
the current sheet with the grid points marked. It shows
that the current sheet is only a few grid points across.
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Fig. 10. A selection of fieldlines at t = 120 (top) and at t =
160 τA (bottom).

4.1.2. Resistive evolution

Since the results in Table 1 indicate formation of a cur-
rent sheet we can continue the simulations into the re-
sistive phase of the evolution and obtain quantitatively
correct results. The value of the coronal resistivity is not
known but is believed to be very small, smaller than the
value we can use in these simulations. However in a current
sheet reconnection will occur regardless of the value of the
resistivity.

Here, we continue the simulations on the 813 and
1613 grids (i.e. a doubling of grid resolution). This will
allow us to check whether the value of the energy release
which we obtain is the converged value.

The simulations are continued until t = 160τA. The
free magnetic energy is taken as the magnetic energy
stored in the Bθ component of the magnetic field. It peaks
between t = 122 and t = 123 Alfvén times and then falls
throughout the rest of the simulation (Fig. 11). The ki-
netic energy (Fig. 11) peaks suddenly and then falls off

Fig. 11. plots of the magnetic energy and kinetic energy
against time during the resistive phase for Case 1.

steadily. The ohmic heating increases at first rapidly and
then steadies off to a constant value as shown in Fig. 12.

Figure 10 shows a selection of fieldlines at t = 120
and at t = 160τA. It can be seen that the fieldlines are
significantly untwisted at t = 160τA. This implies that
reconnection has occurred. The results from the 813 and
1613 grid suggest that approximately 38% (with a differ-
ence of 3% in the results from the grid resolutions) of the
free magnetic energy was released by the reconnection.

4.2. Case 2

4.2.1. Ideal evolution and current sheet scaling

We now wish to consider the effect of photospheric mo-
tions on a loop which already contains some twist but for
which Φ < Φcrit. To do this we use an equilibrium which
we studied in a previous paper (Gerrard et al. 2001) but
take the loop to be shorter than the critical length. The
boundary motions are then applied using Eq. (12) with
v0 = 0.05 in a clockwise direction on the lower boundary
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Fig. 12. A plot of the ohmic heating against time for Case 1.

and anti-clockwise on the upper boundary. These increase
the twist in the loop (Fig. 13).

During the initial phase a boundary layer is again visi-
ble near the photospheric boundaries as shown in Figs. 14
and 15. However, the boundary layer seems to have a more
limited extent than for case 1 due to the fact that we have
started from a twisted field.

We carry out the simulations on 813, 1213, 1613 and
2013 grids. From these simulations we can see that at
t = 40τA the loop has become kinked, indicating that the
loop has become unstable to the kink instability. Plotting
the growth rate against time (Fig. 16) also shows that the
loop becomes unstable to the kink instability after ap-
proximately 40 Alfvén times. Again, we compare this to
the linear prediction. Here, we apply the same twisting
motions as for case 1 but the loop already contains some
twist. We calculate the same estimates for the time taken
for the loop to become unstable as for case 1. Thus, we
have,

4tv0

∫ r=1

0

(1− r2)2rdr + 2
∫ r=1

0

πBθ
rBz

rdr = 2.5π. (21)

Evaluating this with v0 = 0.05 gives t = 68.4. For the
second estimate we have a twist of,

Φ = 2tv0(1− r2)2 +
πBθ
rBz
· (22)

This is more complicated than case 1 owing to the Bθ/rBz
contribution. However, from Fig. 1 it can be seen that the
maximum of the twist in fact exceeds 2.5π at t = 0. We
know (Van der Linden, private communication, 2000) that
this configuration is stable for a loop of length less than
4.4. As mentioned for case 1 our method of approximating
the stability limits is very crude and here this estimate is
not very useful. Thus the linear results suggest that the
loop will become unstable by t = 68.4. As we have seen
the simulations show the loop becoming unstable at t = 40
which is in agreement with this. It is also worth noting
that this linear prediction is only approximate as the loop
does not have uniform twist and is not stationary.

Fig. 13. A selection of fieldlines at t = 0 (top) and at t = 50 τA
(bottom).

Table 2. Scaling of the maximum of the current with higher
resolution.

grid scalings

nx, ny, nz 813 1213 1613 2013

dx 0.0532497 0.0359548 0.0269261 0.0215211

jmax 4.0 6.2 8.1 10.7
Expected scaling 4.1 6.2 8.2 10.3

An isosurface of the current at t = 60τA (Fig. 17)
shows a helical structure wrapped around the kinked cen-
tral column. As in Sect. 4.1.1 we wish to investigate
whether this helical structure is a current sheet or whether
the current saturates at a finite value. Table 2 gives jmax

against dx for each grid resolution investigated. jmax is
calculated as described in Sect. 4.1.1 and again dx is the
grid spacing at the location of the current concentration
formation. The predicted scalings are, as in Sect. 4.1.1,
based on the 1213 results. This table shows that the
maximum current is scaling linearly with grid resolution.
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Fig. 14. A surface plot showing the boundary layers at the
photospheric boundaries.

Fig. 15. An isosurface showing the boundary layers.

Fig. 16. Plot of the growth rate, γ, against time for the ideal
simulations for case 2.

Fig. 17. An isosurface of the current for Case 2 at t = 60
showing the kinked central column of current with a helical
current concentration wrapped around it.

Fig. 18. A plot of the ohmic heating for Case 2.

This is consistent with the current density reaching jgrid

and therefore indicative of a current sheet.

4.2.2. Resistive evolution

We now continue the simulation until the ohmic heating
steadies off to a constant value, as shown in Fig. 18. This
allows us to investigate the resistive phase of the evolution.
As noted in Sect. 4.1.2 the value of the resistivity in the
solar corona is unknown but is likely to be smaller than
the value used in these simulation. However, since the re-
sults in Table 2 are indicative of current sheet formation
the resistive phase simulations will be quantitatively ac-
curate regardless of the value of the resistivity. We carry
out the continuation of the simulations on 813, 1213 and
1613 grids, running the code until t = 100τA. This will al-
low us to check that the energy release is constant across
grid resolutions i.e. converged, as discussed in Sect. 2.

During this resistive phase of the simulation the ohmic
heating increases, at first quickly and then steadies off to a
constant value, the magnetic energy decreases and the ki-
netic energy increases suddenly and then decreases slowly
(Fig. 19). Figure 20 shows a selection of fieldlines at t = 50
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Fig. 19. plots of the magnetic energy and kinetic energy
against time during the resistive phase for Case 2.

and t = 100 Alfvén times. It can be seen that the fieldlines
have become untwisted by t = 100τA. This, with the de-
creasing magnetic energy, the sudden increase in kinetic
energy and increasing ohmic heating, suggests that the
fieldlines have reconnected between t = 50 and t = 100τA
releasing the free magnetic energy. The free magnetic en-
ergy is calculated by taking the amount of energy stored
in the Bθ component of the magnetic field. This peaks at
approximately 48 Alfvén times and then decreases by ap-
proximately 35% (on the 813, 1213, and 1613 grids). Since
all the grid resolutions result in the same energy release
this is the converged value. This suggests that 35% of the
free magnetic energy is released by reconnection.

5. Conclusions

Our aim in this paper has been to carry out non-linear 3D
MHD simulations of the effect of photospheric vortex mo-
tions on the evolution of a coronal loop. In previous simu-
lations (Gerrard et al. 2001; Baty 2000; Arber et al. 1999;
Lionello et al. 1998) the initial configuration has been an
equilibrium with Φ > Φcrit. This unstable equilibrium is

Fig. 20. A selection of fieldlines at t = 50 (top) and at t =
100 τA (bottom).

then perturbed, the instability grows and its evolution is
followed. Figure 21 shows a sketch of the growth rate, γ
against the length Lz of a loop (this is similar to Fig. 3
of Lionello et al. 1998). The simulations with Φ > Φcrit in
the initial configuration, are represented on this plot by a
cross. In this paper our aim has been to consider an earlier
stage in the evolution (the region circled in the plot). By
twisting a loop with velocities which mimic photospheric
footpoint motions we can evolve it slowly through this
early phase. This slower evolution may result in

– the formation of a stable kinked equilibrium
– the saturation of the current concentration.

The aim of this paper is to investigate what effect the
boundary motions have on the evolution of the loop. In
particular, we have investigated whether the twisting mo-
tions at the loop’s footpoints can trigger the kink insta-
bility and whether the instability will evolve as predicted
by the simulations where Φ > Φcrit. i.e. whether a current
sheet will form and reconnection will take place.
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γ

zL

Fig. 21. Plot of γ against Lz with the cross indicating sim-
ulations beginning with Φ > Φcrit and the encircled region
representing the simulations carried out in this paper where
the loop is evolved slowly until the instability is triggered.

To do this we take two initial equilibrium configura-
tions. In case 1 we consider a purely axial magnetic field
and apply boundary conditions to model photospheric mo-
tions. These twist the field into a loop and then increase
the twist in the loop until it exceeds the critical value for
the kink instability. In case 2 we consider an equilibrium
which already contains some twist but for which Lz is
chosen such that Φ < Φcrit. The twisting motions on the
boundaries are then chosen to increase the twist in the
loop until it exceeds Φcrit. An isosurface of the current
at this time shows that it has become kinked. For both
case 1 and case 2 we allow the loop to continue to evolve
and a helical structure is seen to wrap itself around the
kinked central current. We have investigated the scaling
of the current with grid resolution and have found that
jmax scales linearly with higher resolution. Actually the
current density is limited by localised resistivity to jgrid,
the maximum resolvable current density on the grid. Thus,
the linear scaling is simply another way of stating that the
current density always reaches the maximum value allowed
on each grid. This indicates that the helical structure, in
both cases investigated in this paper, behaves as a cur-
rent sheet on all resolutions tested. This means that we
can carry out simulations with a larger value of resistivity
than is likely in the solar corona but will obtain quan-
titatively correct results. Provided a current sheet forms
in ideal MHD the results from resistive MHD simulations
are not sensitive to the local value of resistivity. It is how-
ever important that the large scale structure of the ideal
MHD mode is resolved as it is the rate at which this drives
new flux into the resistive layer which determines the

energy release rate. It should also be noted that this is
best achieved by having a localised resistivity as a uni-
form resistivity would effect the development of the large
scale structure as was observed in Arber et al. (1999).

For case 1 the resistive phase of the evolution is inves-
tigated on both an 813 and a 1613 grid giving a doubling
of grid resolution. For case 2 the simulations are continued
on the 813, 1213 and 1613 grids. For both cases the simu-
lations are continued until the ohmic heating has steadied
off to a constant value. Plots of the fieldlines at the start
and end of the resistive phase of the simulation show that
the fieldlines are significantly untwisted by the end of the
simulation. This suggests that reconnection has occurred.
Free magnetic energy is released as a result of this recon-
nection. For both cases the energy release is the same on
all three grid resolutions and therefore the value is the con-
verged value. Thus reconnection releases 38% of the free
magnetic energy for case 1 and 35% of the free magnetic
energy for case 2.

In conclusion,

– During the initial twisting of case 1 and case 2 we
obtain small boundary layers near the photosphere.
This agrees with the results of Lothian & Hood (1989),
Browning & Hood (1989), Robertson et al. (1992), and
Mikic et al. (1990).

– For case 1 the boundary motions twist the initially
axial field into a loop with a profile similar to those
studied in previous simulations.

– For case 1 the boundary velocities then continue to
twist the loop eventually triggering the kink instabil-
ity. For both case 1 and case 2 a current concentra-
tion builds up during the non-linear evolution of the
instability.

– jmax scales linearly with grid resolution for case 1 and
case 2 indicating current sheet formation.

– For case 1 and case 2 reconnection releases, respec-
tively, 38% and 35% of the free magnetic energy.

– This is sufficient energy to explain a compact loop
flare.
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