1,869 research outputs found

    Providing True Opportunity for Opportunity Youth: Promising Practices and Principles for Helping Youth Facing Barriers to Employment

    Get PDF
    Many "opportunity youth" -- youth who are not working or in school -- would benefit substantially from gaining work experience but need help overcoming barriers to employment and accessing the labor market.Those opportunity youth facing the most significant challenges, such as extreme poverty, homelessness, and justice system involvement, often need even more intensive assistance in entering and keeping employment, and are at risk of being left behind even by employment programs that are specifically designed to serve opportunity youth.This paper builds on the research literature with extensive interviews with employment program providers who have had success in helping the most vulnerable opportunity youth succeed in the workforce. Six principles for effectively serving these youth are identified

    Timing of the 2008 Outburst of SAX J1808.4-3658 with XMM-Newton: A Stable Orbital Period Derivative over Ten Years

    Full text link
    We report on a timing analysis performed on a 62-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst that started on September 21, 2008. By connecting the time of arrivals of the pulses observed during the XMM observation, we derived the best-fit orbital solution and a best-fit value of the spin period for the 2008 outburst. Comparing this new set of orbital parameters and, in particular, the value of the time of ascending-node passage with the orbital parameters derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by the PCA on board RXTE, we find an updated value of the orbital period derivative, which turns out to be P˙orb=(3.89±0.15)×1012\dot P_{\rm orb} = (3.89 \pm 0.15) \times 10^{-12} s/s. This new value of the orbital period derivative agrees with the previously reported value, demonstrating that the orbital period derivative in this source has remained stable over the past ten years. Although this timespan is not sufficient yet for confirming the secular evolution of the system, we again propose an explanation of this behavior in terms of a highly non-conservative mass transfer in this system, where the accreted mass (as derived from the X-ray luminosity during outbursts) accounts for a mere 1% of the mass lost by the companion.Comment: 4 pages, 3 figures. Final version, including editing corrections, to appear on A&A Letter

    Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems

    Full text link
    Packing and vehicle routing problems play an important role in the area of supply chain management. In this paper, we introduce a non-linear knapsack problem that occurs when packing items along a fixed route and taking into account travel time. We investigate constrained and unconstrained versions of the problem and show that both are NP-hard. In order to solve the problems, we provide a pre-processing scheme as well as exact and approximate mixed integer programming (MIP) solutions. Our experimental results show the effectiveness of the MIP solutions and in particular point out that the approximate MIP approach often leads to near optimal results within far less computation time than the exact approach

    Neutrinos and Big-Bang Nucleosynthesis

    Get PDF
    Observations of clusters and super clusters of galaxies have indicated that the Universe is more dominated by baryons than ever estimated in the homogeneous cosmological model for primordial nucleosynthesis. Recent detections of possibly low deuterium abundance in Lyman-α\alpha clouds along the line of sight to high red-shift quasars have raised another potential difficulty that \he4 is overproduced in any cosmological models which satisfy the low deuterium abundance constraint. We show that the inhomogeneous cosmological model with degenerate electron-neutrino can resolve these two difficulties.Comment: 7 pages, latex, 3 figures. To appear in Nucl. Phys. A62

    Detection of a period decrease in NN Ser with ULTRACAM: evidence for strong magnetic braking or an unseen companion?

    Get PDF
    We present results of high time resolution photometry of the eclipsing pre-cataclysmic variable NN Ser. We observed 13 primary eclipses of NN Ser using the high-speed CCD camera ULTRACAM and derived times of mid-eclipse, from fitting of light curve models, with uncertainties as low as 0.06 s. The observed rates of period change appear difficult to reconcile with any models of orbital period change. If the observed period change reflects an angular momentum loss, the average loss rate is consistent with the loss rates (via magnetic stellar wind braking) used in standard models of close binary evolution, which were derived from observations of much more massive cool stars. Observations of low-mass stars such as NN Ser's secondary predict rates of ~100 times lower than we observe. We show that magnetic activity-driven changes in the quadrupole moment of the secondary star (Applegate, 1992) fail to explain the period change by an order of magnitude on energetic grounds, but that a light travel time effect caused by the presence of a third body in a long (~ decades) orbit around the binary could account for the observed changes in the timings of NN Ser's mid-eclipses. We conclude that we have either observed a genuine angular momentum loss for NN Ser, in which case our observations pose serious difficulties for the theory of close binary evolution, or we have detected a previously unseen low-mass companion to the binary.Comment: 10 pages, 6 figures. Accepted for publication in MNRA

    Peaks above the Harrison-Zel'dovich spectrum due to the Quark-Gluon to Hadron Transition

    Get PDF
    The quark-gluon to hadron transition affects the evolution of cosmological perturbations. If the phase transition is first order, the sound speed vanishes during the transition, and density perturbations fall freely. This distorts the primordial Harrison-Zel'dovich spectrum of density fluctuations below the Hubble scale at the transition. Peaks are produced, which grow at most linearly in wavenumber, both for the hadron-photon-lepton fluid and for cold dark matter. For cold dark matter which is kinetically decoupled well before the QCD transition clumps of masses below 1010M10^{-10} M_\odot are produced.Comment: Extended version, including evolution of density perturbations for a bag model and for a lattice QCD fit (3 new figures). Spectrum for bag model (old figure) is available in astro-ph/9611186. 9 pages RevTeX, uses epsf.sty, 3 PS figure

    Robust Weak-lensing Mass Calibration of Planck Galaxy Clusters

    Full text link
    In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of \left = 0.688 \pm 0.072. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of <MPlanck/MWtG>=0.698±0.062\left< M_{Planck}/M_{\rm WtG} \right> = 0.698 \pm 0.062 from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are 1.6σ\sim 1.6\sigma lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for "new physics" such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.Comment: 5 pages, 2 figure
    corecore